	CableLabsSpecification Engineering Change (EC) Form

	EC TRACKING INFORMATION (Blue fields to be completed by CableLabs only)

	Project
	[bookmark: txtProjectName]DOCSIS
	Status
	[bookmark: Status]N
	Identifier
	[bookmark: Identifier]MULPIv3.1-N-19.2011-5
	Version
	[bookmark: Version]5

	Affected Specification
	[bookmark: AffectedSpecification]CM-SP-MULPIV3.1-I17-190121

	ECR Date
	[bookmark: ECR_Create_Date]3/7/2019
	Comment Period End Date
	[bookmark: ECR_CPE_Date]3/13/2019
	SEVERITY
	CHANGE TYPE

	ECO Date
	[bookmark: ECO_Create_Date]
	Comment Period End Date
	[bookmark: ECO_CPE_Date]4/3/2019
	[bookmark: chkNonCritical]|X| Non-Critical
	[bookmark: chkMinor]|X| Minor

	ECN Date
	[bookmark: ECN_Create_Date]4/4/2019
	Cert Wave No
	[bookmark: CertWaveNo]
	[bookmark: chkCritical]|_| Critical
	[bookmark: chkMajor]|_| Major

	ECN Effective Date
	[bookmark: ECN_Eff_Date]
	Overall Type of Change (Tech/Edit/Both)
	[bookmark: OverallTypeChange]Technical

DOCSIS_3.1_Spec-TestPlan_EC-Form_02-2018.docx		1 of 2
In submitting the Engineering Change Request ("ECR"), the Author(s) [primary author, additional authors, and contributors], individually and as an authorized representative of the Company, agrees that if CableLabs incorporates this ECR in whole or in part into the relevant Specification, all intellectual property in the ECR shall be licensed royalty free, and without confidentiality, under the terms of the "Data Over Cable Service Interface Specifications License Agreement" ("Contribution Agreement"). CableLabs may disclose the content of this ECR to CableLabs' members and such others as is necessary for the development of CableLabs' specifications. Questions about the Authors' licensing of intellectual property in this ECR submission may be directed to legal@cablelabs.com.
TO OBTAIN LATEST ISSUED SPECIFICATION WORD VERSION, CLICK THE FOLLOWING: https://community.cablelabs.com/wiki/display/TECHPUBS/DOCSIS+Spec+Current+Issued
TO SUBMIT EC, EMAIL COMPLETED FORM TO: docsis_ec@cablelabs.com
	SPECIFICATION DOCUMENT DETAILS

	[bookmark: cmbSpec][bookmark: txtIssuedVers]Document EC is written against: Issued Version # I17	Comment by CableLabs:
Click on the drop-down arrow and select the specification or Test Plan name.

	AUTHOR INFORMATION

	Primary Author
	[bookmark: txtFirstName][bookmark: txtLastName]First Karthik Last Sundaresan
	Country
	[bookmark: txtCountry]USA

	Email
	k.sundaresan@cablelabs.com
	Phone
	[bookmark: txtPhone]3036613895

	Company
	[bookmark: txtCompany]CableLabs

	Additional Contributors
	Greg White, Bob Briscoe, Tom Henderson, Low Latency DOCSIS WG Members

	ENGINEERING CHANGE DOCUMENT DETAILS

	Title of EC
	Clarifications and refinements to LLD technology

	Date sent to CableLabs
	[bookmark: txtDateSubmitted]2/27/19
	

	EC REVISION HISTORY

	Date of revised EC	Comment by CableLabs:
This is a DATE only field. Information for each version can be listed in the brief description field below.
	[bookmark: txtRevisedEcDate]3/4/19, 3/21/19, 3/27/19, 4/2/19

	Brief description of revision	Comment by CableLabs:
To be filled in ONLY when revising the original posted EC. For multiple revisions, please add to the previous text, noting the version # to which the description applies.
	(3/4) Edits to IAQM Annex, (3/21) Changes 11-19, (3/25 , Editorial change #20), 4/2 (minor changes to QP , deleted extraneous pseudo code and comments

	DETAILED PROPOSED CHANGES

	Sections Affected
	[bookmark: SectionsAffected]C.2.2.x, Annex M, Annex N, Annex P, G.1.4, 7.7.x, 7.5.7, 6.4.x, 7.6.2, Annex Q (new)

	REQs Affected
	
	Test Plans Affected
	

	DOES THIS EC REQUEST A NEW TLV OR SUB-TLV NUMBER? Yes ___
See embedded change detail for TLV table templates.

	DOES THIS EC REQUEST A NEW OR REVISED FIGURE OR GRAPHIC? Yes ___
If yes, attach all graphic files and list those attached files in the table below. NOTE: Graphics submitted are to be editable except for UML diagrams.

	other related engineering changes (list all the apply)

	The following EC(s) are recommended to be processed in conjunction with this document:

	EC#
	Title of EC
	Affected Document

	
	
	

	This Engineering Change has the following file(s) attached.

	Type of Attachment(s) (Visio, Word, txt, .yang, etc.)
	File Name of Attachment(s)

	
	

NOTE! IMPORTANT EC AUTHOR INSTRUCTIONS:
For an ECR to advance to ECO status:
- Requirements Affected section of the embedded DOCSIS-SpecDetailChange.docx must be completed.
For an ECO to advance to ECN status:
- If applicable, compiled MIB files and final Schema docs must be attached before requested changes can move to ECN status and noted as attachments in the table above.
- The REQ CHANGE DETAILS table in the embedded change details document MUST be completed.

DETAILED DESCRIPTION OF PROBLEM:
This EC makes various corrections and clarifications to the LLD spec text.

CHANGE DETAILS FOR THE SPECIFICATION:
Complete Engineering Change details for the specification are contained in the following embedded file:

CHANGE DETAILS FOR THE TEST PLAN (ATP):
Complete Engineering Change details for the test plan are contained in the following embedded file:

End of Request
[bookmark: _MON_1385384516]Additional Instructions to EC Author

DOCSIS_3.1_Spec-TestPlan_EC-Form_02-2018.docx		2 of 2
In submitting the Engineering Change Request ("ECR"), the Author(s) [primary author, additional authors, and contributors], individually and as an authorized representative of the Company, agrees that if CableLabs incorporates this ECR in whole or in part into the relevant Specification, all intellectual property in the ECR shall be licensed royalty free, and without confidentiality, under the terms of the "Data Over Cable Service Interface Specifications License Agreement" ("Contribution Agreement"). CableLabs may disclose the content of this ECR to CableLabs' members and such others as is necessary for the development of CableLabs' specifications. Questions about the Authors' licensing of intellectual property in this ECR submission may be directed to legal@cablelabs.com.
image1.emf

DOCSIS_SpecChange
Details_01-2018.docx

DOCSIS_SpecC h a n g e

Details_01-2018 . d o c x

Microsoft_Word_Document.docx

		CableLabs Specification Engineering Change Details

NOTE: This embedded document is unprotected; therefore, all Word features are available including:
Track changes, document compare, all menus and toolbars, etc. See instructions below.

[bookmark: ECID]EC Identifier: MULPIv3.1-N-19.2011-5

(to be inserted by CableLabs)

[bookmark: TitleOfEC]Title of EC: Clarifications and refinements to LLD technology

(to be inserted by CableLabs)

		Change Details - Revision History

		If modifying the change details from the original submitted version of the EC, please complete the following information. Include a brief description of what is different in this version compared to the previously posted version:

Date of the revised EC:

Description of changes to latest version of EC only:

Instructions for Proposed Specification Changes (PLEASE INCLUDE SECTION NUMBER, TITLE, AND PARAGRAPH)

· Engineering Changes may only address one technical issue in one specification, although it may require changes to multiple sections in the specification.

· Please itemize each change as follows. If you have multiple changes and all address the same issue, and if some are technical (may require a vendor to change the design of the product) and some are editorial (points of clarification/clean-up but would not under any circumstances require a change to the product), please select the "Both" option in the numbered Spec Change table(s) below.

· For more than 3 separate changes, copy a blank numbered change table and paste after last change. Please update the change number(s) appropriately.

· Word's Track Changes feature MUST be used! (if not used, this EC will be returned to author)

	- Turn OFF Track Changes in this document.
	- Copy and paste ALL text from document to be changed.
	- Turn ON Word's Track Changes. Any deletions/additions you make will appear as mark-ups.

· In rare circumstances, if extensive changes are necessary in multiple sections or throughout the document, the entire document to be modified may be embedded in the EC form, replacing the existing embedded Changed Detail document. Again, Track Changes MUST be used for ease of review and incorporation. Check with project spec lead for further details.

· Changes to each Requirement MUST be listed in the REQ Change Detail Table below.

· To create new TLV tables, use the 3 table templates

Specification Changes:

		SPEC CHANGE #1

		TYPE OF CHANGE:

		TECHNICAL:

		EDITORIAL:

		BOTH:

		SECTION #

		TITLE

		PARAGRAPH / TABLE # / GRAPHIC #

		C.2.2.7.17.5

C.2.2.7.17.9

C.2.2.7.17.10

		AQM Coupling Factor Exponent

QPQueuingScoreThreshold(CRITICALqLSCORE_us)

QPDrainRateExponent(LG_AGING)

		

[bookmark: _Ref534356945]AQM Coupling Factor Exponent

This is the coupling factor for the AQMs between the Classic Service Flow and the Low Latency Service Flow.

		Type

		Length

		Value

		[70/71].42.5

		1

		exponentCoupling Factor

(range 0-255)

SP_MULPIv3_1-REQ-7854 The CM MUST use an AQM Coupling Factor equal to 2 raised to the value of this sub-TLV in its upstream Low Latency AQM algorithm as described in Section 7.7.5.

SP_MULPIv3_1-REQ-7855 If this sub-TLV is not provided, the CM MUST use a default value of 1 (i.e., an AQM Coupling Factor of 2).

SP_MULPIv3_1-REQ-7856 The CMTS MUST use an AQM Coupling Factor equal to 2 raised to the value of this sub-TLV in its downstream Low Latency AQM algorithm as described in Section 7.7.5.

SP_MULPIv3_1-REQ-7857 If this sub-TLV is not provided, the CMTS MUST use a default value of 1 (i.e., an AQM Coupling Factor of 2).

QPQueuingScoreThreshold (CRITICALqLSCORE_us)

This is the Queuing Score Threshold (CRITICALqLSCORE_us) for the Queue Protection function in the Latency Queue.

		Type

		Length

		Value

		[70/71].42.9

		2

		µs

SP_MULPIv3_1-REQ-7867 If this sub-TLV is not provided, the CM MUST use a default value of 2000 4000 µs. SP_MULPIv3_1-REQ-7868 If this sub-TLV is not provided, the CMTS MUST use a default value of 2000 4000 µs.

QPDrainRateExponent(LG_AGING)

This is the drain rate (aging rate) for the Queue Protection function in the Low Latency Queue. The drain rate of the queuing score is expressed as an exponent of 2, in bytes/sec, e.g., a value of 17 19 means the Queue Protection function will use a value of 2^17 19 bytes/sec

		Type

		Length

		Value

		[70/71].42.10

		1

		Exponent to calculate the drain rate.

SP_MULPIv3_1-REQ-7869 If this sub-TLV is not provided, the CM MUST use a default value of 1719. SP_MULPIv3_1-REQ-7870 If this sub-TLV is not provided, the CMTS MUST use a default value of 1719.

		SPEC CHANGE #2

		TYPE OF CHANGE:

		TECHNICAL:

		EDITORIAL:

		BOTH:

		SECTION #

		TITLE

		PARAGRAPH / TABLE # / GRAPHIC #

		C.2.2.7.15.4

		Immediate AQM Min Threshold

		

[bookmark: _Ref534355672]Immediate AQM Min Max Threshold

The 'Immediate AQM Min Max Threshold' parameter provides the minimum maximum threshold in microseconds of the ramp function used by the Immediate AQM algorithm (Annex N) and the Queue Protection algorithm (Annex P). This parameter is only defined if the AQM algorithm used by the Service Flow is ImmediateAqm; otherwise it is ignored.

		Type

		Length

		Value

		[24/25].40.4

		2

		Minimum threshold of the ramp function (in microseconds)

SP_MULPIv3_1-REQ-7842 If the AQM algorithm used by the Service Flow is ImmediateAqm and this sub-TLV is not provided, the CM MUST use a default value of 1000475µs.

SP_MULPIv3_1-REQ-7843 If the AQM Algorithm used by the Service Flow is ImmediateAqm and this sub-TLV is not provided, the CMTS MUST use a default value of 1000475µs.

		SPEC CHANGE #3

		TYPE OF CHANGE:

		TECHNICAL:

		EDITORIAL:

		BOTH:

		SECTION #

		TITLE

		PARAGRAPH / TABLE # / GRAPHIC #

		C.2.2.7.17.8

		QPLatencyThreshold (CRITICALqL_us)

		

QPLatencyThreshold (CRITICALqL_us)

This is the latency threshold (CRITICALqL_us) for the Queue Protection function in the Latency Queue.

		Type

		Length

		Value

		[70/71].42.8

		2

		µs

SP_MULPIv3_1-REQ-7865 If this sub-TLV is not provided, the CM MUST use a default value of 1000 µs equal to ‘MAXTH’/1000 , where the MAXTH value is calculated as defined in Annex N.1. SP_MULPIv3_1-REQ-7866 If this sub-TLV is not provided, the CMTS MUST use a default value equal to ‘MAXTH’/1000, where the MAXTH value is calculated as defined in Annex N.1 of 1000 µs.

		SPEC CHANGE #4

		TYPE OF CHANGE:

		TECHNICAL:

		EDITORIAL:

		BOTH:

		SECTION #

		TITLE

		PARAGRAPH / TABLE # / GRAPHIC #

		Annex N

		Immediate Active Queue Management (Normative)

		

[bookmark: _Ref534353302][bookmark: _Toc535742503]Immediate Active Queue Management (Normative)

This annex defines the Immediate Active Queue Management (IAQM) algorithm required to be supported by the cable modem if the a low latency characteristic isAggregate Service Flow is enabled (see Section 7.7.5). The IAQM algorithm is used by Low Latency Service Flows (LL SF) as part of the Dual Queue Coupled AQM structure described in Section 7.7.5. The IAQM can also be used by a CMTS for downstream LL SFs, also as part of a Dual Queue Coupled AQM structure.

The IAQM algorithm is typically only applied to packets that indicate that the end-to-end transport supports Low Latency Low Loss Scalable throughput Explicit Congestion Notification (L4S ECN). The data sender does this by setting the ECT(1) codepoint in the ECN field of the IP header [RFC 8311] [draft-ietf-tsvwg-ecn-l4s-id]. This codepoint is one of the default classifiers that classifies L4S ECN packets into the LL SF.

The IAQM signals increasing congestion by marking the Explicit Congestion Notification (ECN) field of the packet's IP header (v4 or v6) with the Congestion Experienced (CE) codepoint. The CE marking is also one of the default classifiers for the LL SF, because the ECT(1) codepoint might have been changed to CE earlier in the path.

In order to introduce minimal delay into the feedback loop, the IAQM signals queue growth immediately rather than attempting to smooth out short-term variations. L4S data senders are expected to smooth the signal themselves, when appropriate.

It is common for the drain rate of the LL queue to vary, given it shares Aggregate Service Flow capacity with the Classic queue. Therefore, all the queue parameters and queue measurements taken by the IAQM are cast in units of queuing time, not queue size, so that they remain inherently correct as the drain rate varies.

The IAQM uses a ramp function to determine the likelihood of ECN-marking each packet dependent on the current queuing delay. The marking probability rises from 0 to 1 between minimum and maximum queue delay thresholds.

As explained in Section 7.7.5, the marking and drop probabilities of the LL and Classic queues are coupled together, but the Classic probability is squared relative to that of the LL queue to counterbalance its square root relationship with the Classic flow rate [draft-ietf-tsvwg-aqm-dualq-coupled]. The LL AQM compares the probability from the native LL AQM to the probability coupled across from the Classic AQM and uses the larger of the two. Then, as LL data sources seek out their maximum flow rate, they will converge on the point where the greater of the outputs from both queues is minimized, which will be when they are equal.

The ramp function used for the IAQM algorithm is the same as the ramp function used for Queue Protection (if enabled; see Section 7.7.6). This helps to ensure that the basis of Queue Protection decisions is transparent to end-users and application developers, who can be assured that they are unlikely to trigger Queue Protection if they follow a recommended response to ECN signals from the IAQM.

[bookmark: _Toc531185663][bookmark: _Ref534356895][bookmark: _Toc535742504]Immediate AQM Constants and Variables

Below, the parameters for the IAQM algorithm are defined with their default and their units in '[]'. The parameter for the coupling between the IAQM and the Classic AQM is also defined.

The queue delay thresholds for the ramp are configured by setting the minimum threshold and the range between the minimum and the maximum thresholds. The function can be effectively made into a step by reducing the range of the ramp to its minimum value.

For a low aggregate maximum sustained rate (MAX_RATEAMSR) SF, a threshold set in units of time could represent a very small number of packets in the queue. For example, at 12 Mb/s, a 1 ms threshold would lead to ECN marking whenever the queue exceeded a single 1500B packet. Therefore, any configuration that would set a threshold at less than 2 maximum transmission units (MTUs) is automatically increased to this floor of 2 MTU; otherwise, the ECN-marking level would always be close to 100% in such cases.

[bookmark: __RefHeading___Toc65197_1536187203]// Parameters for the IAQM algorithm:

MAXTH_us // Max marking threshold [μs] (see Section C.2.2.7.15.4

 // for IAQM

MINTH_us = 475 // Min marking threshold [μs] (see Section C.2.2.7.15.4),

 // for QP and IAQM

LG_RANGE = 19 // Log base 2 of the range of ramp [lg(ns)] (see Section

 // C.2.2.7.15.5) for QP and IAQM

 // Default: 2^19 = 524288 ns (roughly 525 μs)

BUFFER_SIZE // The size of the buffer for the LL service flow [B]

 // (see Section C.2.2.7.11.5). A value of 100 µs10 ms multiplied

 // by the ASF Maximum Sustained Rate (MAX_RATE)AMSR is recommended

// Parameter for the coupling between Classic and LL queues:

LG_K = 1 // Log base 2 of coupling factor [lg(dimensionless)]

// Internal constants:

PROB_OVERLOAD = 1 // threshold for qc.probCL_ over which C queue overloaded

MAX_PROB = 1 // For integer arithmetic, would use a large integer

 // e.g., 2^31, to allow space for overflow

enum IAQM_EXIT_STATUS {

 EXIT_FWD, // 0: Forward packet

 EXIT_DROP, // 1: Drop packet

 EXIT_CE // 2: Mark ECN field of packet with Congestion Experienced

}

ECN_MASK = 3 // Mask to locate the ECN field in the IP header (v4 or v6)

L4S_MASK = 1 // Mask to match the ECN codepoints that identify L4S pkts

enum ECN_CODEPOINT {

 NOT-ECT, // 0: Not ECN-Capable Transport

 ECT1, // 1: ECN-Capable Transport 1

 ECT0, // 2: ECN-Capable Transport 0

 CE, // 3: Congestion Experienced

}

// Internal constants derived from input parameters:

MAX_FRAME_SIZE = 2000 // Interface max transmission unit [B]

MAX_RATE // Lesser of Max Sustained Rate of Aggregate Service Flow (ASF) or

 // the Max Sustained rate of the Service Flow[b/s]

MINTH MAXTH = MINTHMAXTH_us * 1000; // Maxin marking threshold [ns]

FLOOR = 2 * 8 * MAX_FRAME_SIZEifMTU * 10^9 / MAX_RATEAMSR;

 // Minimum marking threshold of 2 MTU for slow links [ns]

ifMTU // Interface max transmission unit [B]

AMSR // Max Sustained Rate of Aggregate SF [b/s]

RANGE = (1 << LG_RANGE); // Range of ramp [ns]

if (MINTH < FLOOR) {

 // Adjust RANGE to keep MAXTH unchanged or at least no lower than FLOOR

 RANGE = max(RANGE – (FLOOR – MINTH), 1); // Min of 1 avoids divide by zero

 MINTH = FLOOR;

}

MINTH = max (MAXTH - RANGE , FLOOR);

MAXTH = MINTH + RANGE; // Max marking threshold [ns]

K = 1 << LG_K; // Coupling factor (default 2^1 = 2)

// Public variables:

qdelay // The current queuing delay of the LL queue [ns]

probNative // The current native probability of the LL queue within [0,1]

// Internal variables (ending with "_"):

ecn_ // The ECN codepoint of the packet

probCL_ // The probability coupled from the Classic AQM

probL_ // The current ECN marking probability [0,1] of the LL queue

count_ // Deterministic ECN marking counter stored between packets

// External variables:

packet // The structure holding packet header fields

qC.probCLBase // Coupled Probability output by the base AQM (if PI2)

 // or the square root of drop_prob_ from the PIE AQM (Annex M)

// Public/system functions:

drop(packet). // Drops/discards a packet

random() // Returns uniform IID r.v. in [0,1] >= 24-bit resolution.

queue.byte_length() // Returns current queue length [B],

 // including all MAC PDU bytes without DOCSIS MAC overhead

queue.enque(packet) // Adds packet to tail of queue

queue.qdelay() // Returns the current queuing delay of queue [ns]

queue.recur() // Triggers a task with a certain likelihood

packet.read_ecn() // Returns the ECN field of packet, whether IPv4 or v6

packet.mark_ecn_congestion() // CE-marks the ECN field of packet. Returns boolean

[bookmark: _Toc531185664][bookmark: _Toc535742505]Immediate AQM Control Path

The IAQM control path performs the following:

	- Calls control_path_init() at service flow creation and upon entry into DLS Mode

// Initialization function

control_path_init() {

	count_ = 0;

}

There is nothing else on the IAQM's own control path. Nonetheless, the IAQM data path uses a variable calculated every qC.INTERVAL in the control path of the Classic AQM. The base probability qC.probBase for use in the IAQM data path might be derived in two possible ways:

If the Classic AQM uses the PI2 algorithm, it naturally calculates qC.probBase as the first stage in calculating qC.drop_prob_

If the Classic AQM uses the PIE, algorithm qC.probBase can be derived from the drop probability of the Classic PIE queue, qC.drop_prob_ in an extension to the PIE control path, as defined in Annex M.

[bookmark: _Toc531185665][bookmark: _Toc535742506]Immediate AQM Data Path

The entry point to the Immediate AQM data path is the function iaqm(), which returns the enum IAQM_EXIT_STATUS.

iaqm() would ideally be called on dequeue, The iaqm() function is called after the packet classification and but the following example shows how hardware that does not support drop or ECN-marking on dequeue can call iaqm() on enqueue. Given LL queue delay is generally small relative to the RTT, the extra control-loop delay due to running the AQM at the tail will be relatively small. In this example, iaqm() is called after the packet classification and the Queue Protection functions have been executed on an incoming packet. Given LL queue delay is generally small relative to the RTT, the extra control-loop delay due to running the AQM at enqueue (as opposed to dequeue) will be relatively small.:

main(packet) {

// Assuming packet has been classified to the LL SF (see Section 7.7.4.3),

// and it hasn't been rejected by the Q Protection function (if enabled - see Annex P)

// ...

// Check buffer space is not exhausted

if (qL.byte_length() < BUFFER_SIZE) {

 // Run Immediate AQM for the LL SF

 switch (iaqm(packet, qL.byte_length())) {

 case EXIT_FWD :

 qL.enque(packet);

 break;

 case EXIT_CE:

 packet.mark_ecn_congestion(); // ECN-mark

 qL.enque(packet);

 break;

 case EXIT_DROP:

 drop(packet); // Drop – proactive

 }

} else {

 drop(packet); // Drop - reactive to full queue

}

// Continue...

}

Pseudocode for the iaqm() function that complies with the requirements in [draft-ietf-tsvwg-aqm-dualq-coupled] is given below. The structure of the pseudocode is explained here, while inline comments explain each step.

The pseudocode can be divided into three two main conditional blocks:

processing L4S packets, to decide whether to mark, drop or forward them unchanged;

processing non-L4S packets;

handling overload, which applies to all packets equally, bypassing both the above code blocks.

In order to determine whether to resort to the overload code, the marking probability is compared with the PROB_OVERLOAD parameter (default 100%). For the comparison, a marking probability is needed that represents persistent overload, so probNative is not appropriate, because it is based on the instantaneous queue delay so small transients frequently take it over 100%. Instead, the coupled probability probCL_ is used, because that is derived from the Classic queue (see Figure 127), which is smoothed over multiple sample INTERVALs, and if there is overload in the LL queue there will always be Classic overload too. This is why the first line of iaqm() calculates the coupled probability.

In the non-overload case, theThe packet is tested for L4S support by testing whether the LSB of its ECN field is set. This matches ECN codepoints ECT(1) and CE, but not ECT(0) and Not-ECT as required by [draft-ietf-tsvwg-ecn-l4s-id].

For L4S packets, first the native probability of the LL queue probNative is calculated, using a ramp algorithm.

Then, iaqm() calculates the LL marking probability probL_ as the maximum of the native probability probNative of the LL queue and the coupled probability qc.probCL_ from the Classic queue. It then returns EXIT_CE with likelihood probL_ and EXIT_FWD otherwise. These exit codes tell the calling function to forward the packet respectively with or without a CE-mark. Note that, if the native probability is 100%, there is no need to combine it with the coupled probability, as the result will always still be 100%. So, at the point where iaqm() determines probNative is 100%, it returns EXIT_CE straight away.

For a non-L4S packet, the routine tests for one of two sub-cases:

· In the case of a non-ECN (Not-ECT) packet, all congestion signaling is suppressed, because a non-ECN packet classified into the LL queue is not expected to build a queue and not expected to be responsive to congestion signals either. The overload code still provides a backstop if these assumptions turn out to be incorrect. Thus, for a non-ECN packet, iaqm() simply returns EXIT_FWD.

· In the case of an ECT(0) packet, even though the operator must have deemed it appropriate to classify certain ECT(0) packets into the LL SF, it is assumed that the data source still expects a Classic level of ECN marking (i.e., the square of the L4S level). Therefore, the iaqm() algorithm returns EXIT_CE with probability qC.drop_prob_ and EXIT_FWD otherwise. However, this Classic ECN-marking is applied relative to the LL target delay, not the Classic target.

In the case of overload, the LL queue disables ECN marking as required by the IETF [RFC 3168], [RFC 7567]. L4S data sources fall back to Classic behavior in response to drops. So, when the LL SF is using drop as a congestion signal, it simply uses the AQM of the Classic SF. Thus traffic in either queue will see the same drop probability and they will both aim for the same Classic target delay, which is appropriate for flows that have fallen back to queue-building behavior.

iaqm(packet, q_byte_length) { // IAQM is associated with LL queue only

 // Calculate the coupled probability using the coupling factor and the

 // base probability extracted from the control path of the Classic AQM

 probCL_ = K * qC.probBase;

 // In practice, the multiplication would use a bit-shift

 if (probCL_ < PROB_OVERLOAD) { // Check C queue is not in overload

 // Derive qdelay of qL from its byte_length using qdelayCoupledL() (see Annex P)

 qdelay = qdelayCoupledL(q_byte_length);

 ecn_ = read_ecn(packet);

 if (ecn_ & L4S_MASK) {

 // L4S packet (ECT1 or CE)

 if (qdelay >= MAXTH) {

 probNative = MAX_PROB;

 probL_ = MAX_PROB; // Not used, but set for safety

 return EXIT_CE;

 } else {

 if (qdelay > MINTH) {

 probNative = MAX_PROB * (qdelay – MINTH)/RANGE;

 // In practice, the * and the / would use a bit-shift

 } else {

 probNative = 0;

 }

 // Combine Native and Coupled probabilities into ECN marking probL_

 probL_ = max(probNative, qc.probCL_);

 // Mark the packet as CE with likelihood probL_ using recur() from Section P.1

 return (recur(probL_) ? EXIT_CE : EXIT_FWD);

 }

 } else {

 // Non-L4S in the LL Queue

 if (ecn == NOT-ECT) {

 return EXIT_FWD;

 } else { // ECT0

 // Mark with Classic drop_prob_ but at target delay of the LL queue

 if ((qdelay > MINTH) && (qC.drop_prob_ > random())) {

 	 return EXIT_CE; // CE-mark with probability qC.drop_prob_

 }

 }

 }

 } else { // C queue overload

 if (qC.drop_prob_ > random()) {

 return EXIT_DROP; // drop LL packets with same squared prob as C

 } else if (probCL_ > random()) { // Always TRUE if PROB_OVERLOAD = 1

 // CE-mark any remaining packets

 return EXIT_CE;

 } else {

 return EXIT_FWD;

 }

 }

}

		SPEC CHANGE #5

		TYPE OF CHANGE:

		TECHNICAL:

		EDITORIAL:

		BOTH:

		SECTION #

		TITLE

		PARAGRAPH / TABLE # / GRAPHIC #

		Annex P

		Queue Protection Algorithm

		

[bookmark: _Ref534353308][bookmark: _Toc535742510]Queue Protection Algorithm (Normative)

[bookmark: __RefHeading___Toc10315_1548017663][bookmark: __RefNumPara__10156_1548017663][bookmark: __RefHeading___Toc10268_1548017663][bookmark: __RefNumPara__10266_1548017663][bookmark: __RefHeading___Toc7919_3144830989][bookmark: __RefHeading___Toc2779_1305027544][bookmark: __RefHeading___Toc8663_3144830989][bookmark: __RefHeading___Toc2088_3144830989][bookmark: __RefHeading___Toc2133_3144830989]This annex defines the Queue Protection algorithm that is required to be supported by the CM in the upstream (see Section 7.7.6.1). It is also the Queue Protection algorithm that CMTS Queue Protection algorithms are required to support (see Section 7.7.6.2).

In either direction, this algorithm is intended to be applied solely to a Low Latency Service Flow. It detects queue-building Microflows and redirects some or all of their packets to the Classic Service Flow in order to protect the Latency Service Flow from excessive queuing. A Microflow is defined in Section P.3, but typically it is an end-to-end transport layer data flow.

The algorithm maintains per-Microflow state that holds a “queuing score” representing how much each Microflow was responsible for recent queuing. Under normal conditions, when queuing delay is low, Queue Protection does not intervene at all. However, as each packet arrives, if the queuing delay of the Low Latency Service Flow exceeds a threshold, Queue Protection comes into play. It redirects packets out of the Low Latency Service Flow if they belong to Microflows with excessive queuing scores.

Per-Microflow state is only persistently held for those Microflows most responsible for queuing. The flow state of a non-queue-building Microflow ages out of the system so rapidly that its memory can be re-used as the packets of other non-queue-building Microflows arrive.

As each packet arrives, the algorithm either creates or updates the state for the Microflow to which that packet belongs. It holds this state in a structure called a bucket, because of its similarity to a classic leaky bucket. However, the queuing score does not represent bits; it represents a normalized amount of queuing, termed the congestion-volume, which is the product of the size in bytes of each packet and the probability of congesting the queue at the time the packet is processed.

To derive this queuing score, the Queue Protection algorithm uses the same underlying logic as the Immediate AQM algorithm (Annex N). They both use the same linear ramp function to normalize instantaneous queuing delay into a probability in the range [0,1]. Not only does this improve processing efficiency, but it also helps to ensure that the basis of Queue Protection decisions is transparent to end users and application developers, who can be assured that they are unlikely to trigger Queue Protection if they follow a recommended response to ECN signals from the IAQM.

The queuing score is both accumulated and aged over time. To make aging the score efficient, the queuing score is normalized to units of time, so that it represents how long it will be before the queuing score ages to zero.

Whenever a packet arrives, if a bucket is not already associated with the packet's Microflow, the algorithm looks for an existing bucket with a score that has aged out. Given this bucket is no longer necessary to hold state for its previous Microflow, it can be recycled for use by the present packet's Microflow.

All the functions of Queue Protection operate on the data path, driven by packet arrivals. Below, the functions used for Queue Protection are divided into those that are primarily mechanism or primarily policy. The following functions that maintain per-Microflow queuing scores and manage per-flow state are considered primarily as mechanism:

pick_bucket()

fill_bucket()

The following function is primarily concerned with policy:

qprotect();

It is more likely that there might be future modifications to policy aspects than to mechanism aspects. Therefore, policy aspects would be less appropriate candidates for any hardware acceleration.

[bookmark: _Toc531185670][bookmark: _Ref534356771][bookmark: _Toc535742511]Queue Protection Parameters, Constants and Variables

Queue Protection is configured with the following parameters, with their default values and units as shown. The names of the corresponding AsfQosProfile Extension Object Attribute are shown in parentheses.

// Parameters

[bookmark: __DdeLink__250316_115333559]QPROTECT_ON = TRUE ; // Queue Protection is enabled if TRUE

CRITICALqL_us = 1000; // (QPLatencyThreshold) Threshold delay of L queue [μs]

 // (see Section C.2.2.7.17.8 for QPLatencyThreshold)

CRITICALqLSCORE_us = 2000; // (QPQueuingScoreThreshold) The threshold queuing score [μs]

 // (see Section C.2.2.7.17.9 for QPQueuingScoreThreshold)

LG_AGING = 17; // (QPDrainRateExponent) The aging rate of the queuing score,

 // as an exponent of 2, of the congestion-rate in congestion-byte/s

 // The congestion-rate is the rate of bytes in congestion-marked packets

 // i.e. default aging rate=2^17B/s =128KiB/s =1.048Mb/s // (see Section C.2.2.7.17.10 QPDrainRateExponent)

The following internal constants are either hard-coded or derived from the above parameters, for implementation efficiency or precision.

// Internal constants

AGING = pow(2, (LG_AGING-30)); // Convert lg([B/s]) to [B/ns]

CRITICALqL = CRITICALqL_us * 1000 // Convert [μs] to [ns]

CRITICALqLSCORE = CRITICALqLSCORE_us * 1000 // Convert [μs] to [ns]

CRITICALqLPRODUCT = CRITICALqL * CRITICALqLSCORE // Product used as a threshold

ATTEMPTS = 2; // Max no. of attempts to pick a bucket (default is vendor-specific)

BI_SIZE = 5; // Bit-width of index number for non-default buckets

NBUCKETS = pow(2, BI_SIZE); // No. of non-default buckets

MASK = NBUCKETS-1; // a convenient constant, filled with ones

 // Queue Protection exit states

EXIT_SUCCESS = 0; // Forward the packet

EXIT_SANCTION = 1; // Redirect the packet

Nanosecond precision can be justified by comparison with microsecond precision, because a 1us interval between minimum-sized UDP/IP datagrams (~30B) would only scale to 240Mb/s, which would give insufficient headroom to scale up the rate in future.

The Queue Protection algorithm depends on the following variables external to the Queue Protection algorithm.

// External variables

qL.probNative // The current ECN marking probability [0,1] from the Native AQM for the L queuenative probability of the LL queue within [0,1]

qL.qdelay // The current queuing delay of the L queue [ns]

pkt.size // The size of the packet currently being processed [B]

pkt.uflow // The microflow identifier of the packet currently being processed

 // (e.g. 5-tuple or 4-tuple if IPSec)

The only internal variable shared by all the Queue Protection functions is the array of bucket structures defined here:

struct bucket { // The leaky bucket structure to hold per-microflow state

 id; // the identifier (e.g. 5-tuple) of the microflow using the bucket

[bookmark: __DdeLink__3698_1447962780] t_exp; // expiry time;

 // (t_exp - now) is the microflow's normalized queuing score [ns]

};

struct bucket buckets[NBUCKETS+1];

The time origin for t_exp could be recalibrated infrequently at run-time so that the size of the t_exp variable would not have to be prohibitively large.

All other variables are internal to the functions so they are described where they are declared at the beginning of each function definition.

[bookmark: _Toc531185671][bookmark: _Toc535742512]Queue Protection Data Path

// Functions

qprotect(packet); // Returns exit status to either forward or redirect the packet

pick_bucket(uflow_id); // Returns bucket identifier

fill_bucket(bucket_id, pkt_size); // Returns voidqLscore

The entry point to these functions is qprotect(), which would be called as part of packet classification as follows:

classifier(packet) {

 // ...

 // Classify packet

 // if packet classified to Low Latency Service Flow

 if (QPROTECT_ON) {

 if (qprotect(pkt) == EXIT_SANCTION) {

 // redirect packet to Classic Service Flow

 }

 }

 // Forward packet to Low Latency Service Flow

 // Continue...

}

// Per packet queue protection

qprotect(packet) {

 now; // current time [ns]

 bckt_id; // bucket index

 qLscore; // queuing score of pkt's flow [ns]

 now = get_time_now();

 bckt_id = pick_bucket(packet.uflow);

 // if bckt_id->t_exp at risk of overflow, return EXIT_SANCTION here (not shown)

 qLscore = fill_bucket(buckets[bckt_id], packet.size);

 // Determine whether to sanction packet

 if ((qL.qdelay > CRITICALqL) // Test if Qdelay over a threshold...

 // ...and if microflow's q'ing score scaled by QL.delay/CRITICALqL

 // ...exceeds CRITICALqLSCORE

 && (qL.qdelay * qLscore > CRITICALqLPRODUCT))

 // IA	 && (qL.delay >> LG_CRITqL_SCALED * (buckets[bi].t_exp - now) > CRITqSCORE_SCALED))

 return EXIT_SANCTION;

 else

 return EXIT_SUCCESS;

}

// Pick the bucket associated with microflow uflw

pick_bucket(uflw) {

 now; // current time [ns]

 j; // loop counter

 h32; // holds the hash of the packet's flow identifiers

 h; // bucket index being checked

 hsav; // interim chosen bucket index

 h32 = hash32(uflw); // 32-bit hash of flow ID

 hsav = NBUCKETS; // Default bucket

 now = get_time_now();

 // The for loop checks ATTEMPTS buckets for ownership by the microflow-ID.

 // It also records the first bucket, if any, that could be recycled because it's expired.

 // However, it must not recycle a bucket until it's completed all the ownership checks

 for (j=0; j<ATTEMPTS; j++) {

 h = h32 & MASK; // Use least signif. BI_SIZE bits of hash for each attempt

 if (buckets[h].id == uflw) { // Once bucket owned by uflow-ID is found...

 if (buckets[h].t_exp <= now) // If bucket has expired...

 buckets[h].t_exp = now; // ...reset it

 return h; // ...use it

 }

 else if ((hsav == NBUCKETS) // If an expired bucket is yet to be found

 && (buckets[h].t_exp <= now)) { // and bucket under test has expired

 hsav = h; // set it as the interim bucket

 }

 h32 >>= BI_SIZE; // Bit-shift hash for next attempt

 }

 // If reached here, no tested bucket was owned by the microflow-ID

 if (hsav != NBUCKETS) {

 // If here, we found an expired bucket within the above for loop

 buckets[hsav].t_exp = now; // Reset expired bucket

 } else {

 // If here, we're having to use the default bucket

 if (buckets[hsav].t_exp <= now) { // If default bucket has expired...

 buckets[hsav].t_exp = now; // ...reset it

 } else {

 if (buckets[hsav].id != uflw) // Otherwise, if last used by a diff flow

 // Note: Bucket is not reset even tho used by a diff flow

 // otherwise, a potential vulnerability would result

 }

 }

 buckets[hsav].id = uflw; // In either case, claim bucket for recycling

 return hsav;

}

fill_bucket(bckt_id, pkt_sz) {

 // IA:	buckets[bckt_id].t_exp += (qL.prob * pkt_sz) >> LG_AGING;	// Add packet's q'ing score

 buckets[bckt_id].t_exp += qL.probNative * pkt_sz / AGING; // Add packet's q'ing score

 // For integer arithmetic, a bit-shift can replace the division

 return (buckets[bckt_id].t_exp – now);

}

…..

…..

…..

[bookmark: _Toc531185672][bookmark: _Ref534357459][bookmark: _Toc535742513]Microflow Categorization

…

[bookmark: _Ref534358501]IP Upper Layer Protocols with Well-Known Flow Identifiers

Certain IP Upper Layer Protocols are currently known to distinguish application data flows in the first 32 bits, for example:

		Protocol

		Protocol number

		TCP

		86

		UDP

		17

		DCCP

		33

		ESP

		50

		SCTP

		132

		UDP-Lite

		136

		SPEC CHANGE #6

		TYPE OF CHANGE:

		TECHNICAL:

		EDITORIAL:

		BOTH:

		SECTION #

		TITLE

		PARAGRAPH / TABLE # / GRAPHIC #

		Annex M

		Proportional-Integral-Enhanced Active Queue Management Algorithm (Normative

		

[bookmark: SP_MULPIv3_1-SET-26_0_0][bookmark: API_ID224715][bookmark: _Toc535742499]Proportional-Integral-Enhanced Active Queue Management Algorithm (Normative)

This Annex defines the variant of the PIE AQM algorithm required to be supported by the cable modem (see the Active Queue Management Algorithm subsection in Section 7).

PIE defines two functions organized here into two design blocks:

1.	Control path block, a periodically running algorithm that calculates a drop probability based on the estimated queuing latency and queuing latency trend.

2.	Data path block, a function that occurs on each packet enqueue: per-packet drop decision based on the drop probability.

It is desired to have the ability to update the Control path block based on operational experience with PIE deployments.

The PIE algorithm defined in this Annex has been customized to fit the cable upstream environment in the following way:

1.	Several constants in the PIE algorithm have been optimized for cable networks

2.	Improved handling of the single TCP flow case: extended drop probability calculation to better handle low drop probability scenarios

3.	Instead of performing rate estimation, directly use traffic shaper parameters such as Peak Traffic Rate and Maximum Sustained Traffic Rate as well as the state of the token bucket rate shaper. This does not attempt to track queue draining rate in upstream RF channel congestion scenarios.

[bookmark: API_ID216191][bookmark: _Toc535742500]PIE AQM Constants and Variables

Configuration parameters

 - LATENCY_TARGET. AQM Latency Target for this Service Flow, expressed in secs.

 - PEAK_RATE. Service Flow configured Peak Traffic Rate, expressed in Bytes/sec.

 - MSR. Service Flow configured Max. Sustained Traffic Rate, expressed in Bytes/sec.

 - BUFFER_SIZE. The size (in bytes) of the buffer for this Service Flow.

Constant values

 - A=0.25, B=2.5. Weights in the drop probability calculation

 - INTERVAL=16 ms. Update interval for drop probability.

 - DELAY_HIGH=200 ms.

 - BURST_RESET_TIMEOUT = 1 s.

 - MAX_BURST = 142 ms (150 ms - 8 ms(update error))

 - MEAN_PKTSIZE = 1024 bytes

 - MIN_PKTSIZE = 64 bytes

 - PROB_LOW = 0.85

 - PROB_HIGH = 8.5

 - LATENCY_LOW = 5 ms

 - COUPLED. Boolean to indicate whether the PIE AQM is part of a Coupled DualQ. i.e. a Classic SF under a Low Latency ASF

 - COUPLING FACTOR // AQM Coupling Factor See Section C.2.2.7.17.5

Variables (ending with "_"):

 - drop_prob_. The current packet drop probability with at least 32-bit resolution, and supporting a maximum value between 15 and 64. If COUPLED is TRUE, drop_prob is also accessed by the LL AQM (see Annex N) and by the Queue Protection function (see Annex P) if QPROTECT_ON is also TRUE.

 - accu_prob_. accumulated drop prob. since last drop with at least 32-bit resolution, and supporting a maximum value between 15 and 64.

 - qdelay_old_. The previous queue delay estimate, with resolution of at least 100 µs.

 - burst_allowance_. Countdown for burst protection, initialize to 0

 - burst_reset_. counter to reset burst

 - burst_state_. Burst protection state encoding 3 states

 NOBURST - no burst yet,

 FIRST_BURST - first burst detected, no protection yet,

 PROTECT_BURST - first burst detected, protecting burst if burst_allowance_ > 0

 - queue_. Holds the pending packets. If COUPLED is TRUE, the variable queue_ is assigned to the Classic queue, qC, and the AQM in the Low Latency queue, qL, couples to the Classic drop probability by accessing qC.drop_prob.

 - interval_bitsL. Only defined if COUPLED is TRUE; the bits arriving at the LL queue in the previous sample INTERVAL;

 - arr_byte_counterL_old_. Stored value of bytes arriving at the LL queue.

Public/system functions:

 - drop(packet). Drops/discards a packet

 - random(). Returns a uniform r.v. in the range 0 ~ 1 with at least 24-bit resolution.

 - queue_.is_full(). Returns true if queue_ is full

 - queue_.byte_length(). Returns current queue_ length in bytes, including all MAC PDU bytes without DOCSIS MAC overhead

 - queue_.arr_byte_counter(). Returns the cumulative number of bytes arriving at queue_

 - queue_.enque(packet). Adds packet to tail of queue_

 - msrtokens(). Returns current token credits (in bytes) from the Max Sust. Traffic Rate token bucket

 - packet.size(). Returns size of packet

 - sqrt(). Returns square root. Only needed if COUPLED is TRUE.

[bookmark: API_ID216193][bookmark: _Toc535742501]PIE AQM Control Path

PIE control path performs the following:

 - Calls control_path_init() at service flow creation and upon entry into DLS Mode

 - Calls calculate_drop_prob() at a regular INTERVAL (16ms) except during DLS Mode operation

================

// Initialization function

control_path_init() {

 drop_prob_ = 0;

 qdelay_old_ = 0;

 burst_reset_ = 0;

 burst_state_ = NOBURST;

}

// Background update, occurs every INTERVAL

calculate_drop_prob() {

 // Derive queue delay using qdelay functions defined in Annex O.1.

 if (COUPLED) {

 // Count the bits forwarded by the LL queue during the previous INTERVAL

 interval_bitsL = 8 * (qL.arr_byte_counter() – arr_byte_counterL_old_);

 arr_byte_counterL_old_ = qL.arr_byte_counter();

 if (qC.byte_length() > 0) {

 qdelay = qdelayCoupledC(qC.byte_length());

 } else {

 // If Classic queue empty, maintain drop_prob_ using the LL queue delay.

 qdelay = qdelayCoupledC(qL.byte_length());

 }

 } else {

	 qdelay = qdelaySingle(queue_.byte_length(), msrtokens());

 }

 if (burst_allowance_ > 0) {

 drop_prob_ = 0;

 } else {

 p = A * (qdelay - LATENCY_TARGET) + B * (qdelay - qdelay_old_);

	//Since A=0.25 & B=2.5, can be implemented with shift and add

 if (drop_prob_ < 0.000001) { // to cover extremely low drop prob. scenarios

 p /= 2048;

 } else if (drop_prob_ < 0.00001) {

 p /= 512;

 } else if (drop_prob_ < 0.0001) {

 p /= 128;

 } else if (drop_prob_ < 0.001) {

 p /= 32;

 } else if (drop_prob_ < 0.01) {

 p /= 8;

 } else if (drop_prob_ < 0.1) {

 p /= 2;

 } else if (drop_prob_ < 1) {

 p /= 0.5;

 } else if (drop_prob_ < 10) {

 p /= 0.125;

 } else {

 p /= 0.03125;

 }

	if ((drop_prob_ >= 0.1) && (p > 0.02)) {

 p = 0.02;

 }

 drop_prob_ += p;

 /* for non-linear drop in prob */

 if (qdelay < LATENCY_LOW && qdelay_old_ < LATENCY_LOW) {

 drop_prob_ *= 0.98; // (1-1/64) is sufficient

 } else if (qdelay > DELAY_HIGH) {

 drop_prob_ += 0.02;

 }

 drop_prob_ = max(0, drop_prob_);

 drop_prob_ = min(drop_prob_, PROB_LOW * MEAN_PKTSIZE/MIN_PKTSIZE);

 }

 if (COUPLED) {

 // Calculate the base probability for coupling to the LL AQM

 probCLBase = COUPLING FACTOR * sqrt(drop_prob_)

 }

 if (burst_allowance_ < INTERVAL)

 	burst_allowance_ = 0;

 else

	burst_allowance_ = burst_allowance_ - INTERVAL;

 // both old and new qdelay is well better than the

 // target and drop_prob_ == 0, time to clear burst tolerance

 if ((qdelay < 0.5 * LATENCY_TARGET)

 && (qdelay_old_ < 0.5 * LATENCY_TARGET)

 && (drop_prob_ == 0)

 && (burst_allowance_ == 0)){

 if (burst_state_ == PROTECT_BURST) {

 burst_state_ = FIRST_BURST;

 burst_reset_ = 0;

 } else if (burst_state_ == FIRST_BURST) {

 burst_reset_ += INTERVAL ;

 if (burst_reset_ > BURST_RESET_TIMEOUT) {

 burst_reset_ = 0;

 burst_state_ = NOBURST;

 }

 }

 } else if (burst_state_ == FIRST_BURST) {

 burst_reset_ = 0;

 }

 qdelay_old_ = qdelay;

}

[bookmark: API_ID216195][bookmark: _Toc535742502]PIE AQM Data Path

PIE data path performs the following:

- Calls enque() in response to an incoming packet to the Service Flow’s queue.

================

enque(packet) {

 if (queue_.is_full()) { // Drop - reactive to full queue

 drop(packet);

	 accu_prob_ = 0;

 } else if (drop_early(packet, queue_.byte_length())) { // Drop - proactive

 drop(packet);

 } else {

 queue_.enque(packet);

 }

}

////////////////

drop_early(packet, queue_length) {

 if (burst_allowance_ > 0) {

 return FALSE;

 }

 if (drop_prob_ == 0) {

 	accu_prob_ = 0;

 }

 if (burst_state_ == NOBURST) { //first burst?

 if (queue_.byte_length() < BUFFER_SIZE/3) { 				

 return FALSE;

 } else {

 burst_state_ = FIRST_BURST; //burst detected

 }

 }

 //The CM can quantize packet.size to 64, 128, 256, 512, 768, 1024,

 // 1280, 1536, 2048 in the calculation below	

 p1 = drop_prob_ * packet.size() / MEAN_PKTSIZE;

 p1 = min(p1, PROB_LOW);

	

 accu_prob_ += p1;

 // If latency is low, don't drop packets

 if ((qdelay_old_ < 0.5 * LATENCY_TARGET && drop_prob_ < 0.2)

			|| (queue_.byte_length() <= 2 * MEAN_PKTSIZE)) {

 return FALSE;

 }

 drop = TRUE;

 if (accu_prob_ < PROB_LOW) { // if accumulated prob_ < PROB_LOW, avoid dropping

 // too fast due to bad luck of coin tosses

 drop = FALSE;

 } else if (accu_prob_ >= PROB_HIGH) {//if accumulated prob > PROB_HIGH,drop packet

 drop = TRUE;

 } else { //Random drop

 double u = random(); // 0 ~ 1

 if (u > p1) {

 drop = FALSE;

 }

 }

 if (drop == FALSE) return FALSE;

// In case of packet drop:				

 accu_prob_ = 0;

 if (burst_state_ == FIRST_BURST) { //not protecting first yet?

 burst_state_ = PROTECT_BURST; //start protecting burst

	 burst_allowance_ = MAX_BURST; //this will set the value and update procedure

						//will decrement. can implement this as a

						//150ms timer

 }

 return TRUE;

}

		SPEC CHANGE #7

		TYPE OF CHANGE:

		TECHNICAL:

		EDITORIAL:

		BOTH:

		SECTION #

		TITLE

		PARAGRAPH / TABLE # / GRAPHIC #

		7.7.5

		Dual Queue Coupled AQM Structure

		

[bookmark: _Toc531185574][bookmark: _Ref534280787][bookmark: _Ref534354397][bookmark: _Toc535742263]Dual Queue Coupled AQM Structure

The queues for both service flows that comprise the Low Latency Aggregate Service Flow are managed by two active queue management (AQM) algorithms that are coupled together. These AQMs are deployed at the CM for the upstream and at the CMTS for the downstream.

Data sources that tag their traffic to be classified into the Low Latency Service Flow (LL SF) are expected not to build a queue by sending what is termed non-queue-building traffic (Section 7.7.3), either by sending traffic at a low rate or by responding to Explicit Congestion Notification (ECN), which signals the early onset of queue growth.

If a data source has the logic to understand ECN signals, it will tag its packets with the ECN-Capable-Transport (ECT) codepoint in the 2-bit ECN field of the IP header (v4 or v6) [RFC 3168]. And if the data source has Low Latency Low Loss Scalable throughput (L4S) congestion control logic to keep queuing delay extremely low, it will tag its packets with the ECT(1) codepoint in the ECN field [draft-ietf-tsvwg-ecn-l4s-id]. The AQM that manages the Low Latency Service Flow (the LL AQM) helps such data sources keep the queue to a very shallow target by marking the ECN field increasingly frequently with the Congestion Experienced (CE) codepoint; immediately the queue approaches its target depth (usually configured to 1 ms using the SF AQM Latency Target parameter).

Responding to congestion signaling is less important for a low-rate data source, which does not generally build a queue, so it will leave the ECN field cleared to zero, meaning 'Non-ECN-Cable Transport'. To ensure its packets are classified into the LL SF, it will tag them with a Non-Queue-Building Diffserv Codepoint (DSCP) [draft-briscoe-tsvwg-l4s-diffserv].

Data sources that do not tag their traffic as non-queue-building in one of the above ways are called queue-building. Their traffic is classified into the Classic SF. The Classic AQM keeps the Classic queue to a target delay that is as low as possible, but it cannot be as low as the target of the LL AQM. This is because queue-building traffic is commonly controlled by Queue-Building congestion controllers such as TCP Reno, Cubic or BBR, which under-utilize capacity if the queue is too shallow. The AQM for a Classic SF that is part of an Low Latency Aggregate SF is no different from the AQM for a standalone SF, except the drop probability that it applies is coupled across to the ECN marking level that the LL AQM applies.

The aim of coupling the two AQMs together is to ensure data flows share the capacity of the Aggregate Service Flow as if it were a single pool of capacity. Thus, the two service flows appear as one from a bandwidth perspective, even though the low queuing delay into the LL SF is isolated from that of the deeper queue into the Classic SF.

[image:]

[image:]

[bookmark: _Ref534619730][bookmark: _Toc535741767]Figure 126 - Coupling between the PIE AQM and the Low Latency AQM

The coupling makes the presence of traffic in the Classic SF apparent to sources of LL traffic, so that LL flows make sufficient space for Classic flows. The Inter-SF Scheduler ensures that, if there is traffic queued for the LL SF, it will be served immediately. So the coupling is necessary to ensure that LL traffic leaves enough space between its packets, so that Classic flows will get roughly equal access to the aggregate capacity.

The scalability of L4S data sources stems from the fact that their flow rate is inversely proportional to the congestion signaling level from the network, while Classic data sources are unscalable because their flow rate is inversely proportional to the square root of the congestion signal. The goal is for L4S and Classic data sources to share the capacity of the aggregate SF as if they were all the same type of flow each using roughly the same share of the bandwidth pool. So the Classic drop probability is squared relative to probability that is coupled across to the LL queue, which counterbalances the square root relationship of Classic flow rates. Figure 126 shows how this can be achieved using the PIE AQM. Figure 127 shows an alternative dual queue coupled AQM structure based on the Dual PI2 AQM described in Appendix A of [draft-ietf-tsvwg-aqm-dualq-coupled].

[image:]

[bookmark: _Ref534356435][bookmark: _Toc535741768]Figure 127 - Coupling between the Base AQM of PI2 and the Low Latency AQM

[bookmark: _Hlk535320534]Requirements for both the AQMs in a Coupled AQM structure are included in the requirements for all AQMs in Section 7.8.

		SPEC CHANGE #8

		TYPE OF CHANGE:

		TECHNICAL:

		EDITORIAL:

		BOTH:

		SECTION #

		TITLE

		PARAGRAPH / TABLE # / GRAPHIC #

		C.2.2.8.14

		Guaranteed Grant Rate

		

Guaranteed Grant Rate

The value of this parameter specifies the minimum granting rate, in bits/sec, for an upstream PGS service flow. The valid range of this parameter is specific to the CMTS. SP_MULPIv3_1-REQ-7962 If configured and accepted, the CMTS MUST enforce this parameter as described for the GGI enforcement.

The value of this parameter excludes any CCF Segment Header overhead; however, it includes the DOCSIS MAC header overhead. If this parameter is omitted, then it defaults to a value of 0 bits/sec (i.e., no guaranteed granting for the flow by default). This field is only applicable at the CMTS. If this configured GGR exceeds the Maximum Sustained Traffic Rate for the Service flow, or exceeds the weighted fraction of Aggregate Maximum Sustained Rate for the Aggregate Service Flow, the CMTS MUST reject the Service Flow Request.

		Type

		Length

		Value

		24.45

		4

		GGR in bits/second

		SPEC CHANGE #9

		TYPE OF CHANGE:

		TECHNICAL:

		EDITORIAL:

		BOTH:

		SECTION #

		TITLE

		PARAGRAPH / TABLE # / GRAPHIC #

		C.2.2.7.4

		Minimum reserved Traffic Rate

		

[bookmark: API_ID215635]Minimum Reserved Traffic Rate

This parameter specifies the minimum rate, in bits/sec, reserved for this Service Flow or an Aggregate Service Flow. The value of this parameter is calculated from the byte following the MAC header HCS to the end of the CRC, including every PDU in a Concatenated MAC Frame. If this parameter is omitted, then it defaults to a value of 0 bits/sec (i.e., no bandwidth is reserved for the flow by default).

If the Minimum Reserved Rate exceeds the Maximum Sustained Traffic Rate of the Service Flow or exceeds weighted fraction of Aggregate Maximum Sustained Traffic Rate for the Aggregate Service Flow (upstream or downstream) the CMTS MUST reject the Service Flow request.

How Minimum Reserved Traffic Rate and Assumed Minimum Reserved Rate Packet Size apply to a CMTS's admission control policies is vendor-specific, and is beyond the scope of this specification. The aggregate Minimum Reserved Traffic Rate of all Service Flows could exceed the amount of available bandwidth.

REQ27705 Unless explicitly configured otherwise, a CMTS SHOULD schedule forwarding of all service flows' traffic such that each receives at least its Minimum Reserved Traffic Rate when transmitting packets with the Assumed Minimum Reserved Rate Packet Size. If the service flow sends packets of a size smaller than the Assumed Minimum Reserved Rate Packet Size, such packets will be treated as being of the Assumed Minimum Reserved Rate Packet Size for calculating the rate forwarded from the service flow for purposes of meeting the Minimum Reserved Traffic Rate. REQ27669 If less bandwidth than its Minimum Reserved Traffic Rate is requested for a Service Flow, the CMTS MAY reallocate the excess reserved bandwidth for other purposes.

The granularity of the Minimum Reserved Traffic Rate used internally by the CMTS is vendor-specific. REQ27670 Because of this, the CMTS MAY schedule forwarding of a service flow's traffic at a rate greater than the configured value for Minimum Reserved Traffic Rate.

This field is only applicable at the CMTS.

		Type

		Length

		Value

		[24/25/70/71].10

		4

		

		SPEC CHANGE #10

		TYPE OF CHANGE:

		TECHNICAL:

		EDITORIAL:

		BOTH:

		SECTION #

		TITLE

		PARAGRAPH / TABLE # / GRAPHIC #

		7.7.8.1

		Active Queue Management Algorithm

		

[bookmark: API_ID211898]Active Queue Management Algorithm

The AQM algorithm manages queuing latency in an upstream Service Flow by predicting the queuing latency of each packet that arrives at the Service Flow buffer and using the predicted latency as an input to a control law that determines whether to enqueue the packet or drop the packet.

REQ23204 The CM MUST implement support the PIE AQM algorithm defined in Annex M for all Classic and individual upstream Service Flows that are configured for Best Effort or Non-Real-Time Polling Service. REQ23203 For SFs using the PIE algorithm, whenever the CM exits DLS mode and re-enables the AQM algorithm, the CM MUST reset the AQM state information to the initial state (see the subsection PIE AQM Control Path in Annex M).

SP_MULPIv3_1-REQ-7957 The CM MUST support the Immediate AQM algorithm defined in Annex N for each upstream Service Flow. Selection of AQM algorithm is described in Section C.2.2.7.15.3.

SP_MULPIv3_1-REQ-7958 The CM MUST support the extensions to the PIE algorithm conditional on the COUPLED parameter for each Classic upstream Service Flow that is part of an Aggregate Service Flow that supports Low Latency, as defined in Annex M. SP_MULPIv3_1-REQ-7959 Alternatively, the CM MAY use the PI2 algorithm for each Classic upstream Service Flow that is part of an Aggregate Service Flow that supports Low Latency.

New AQM algorithms may be developed in the future, and as a result, it may be necessary or desired to update the AQM algorithm on deployed CMs. Hence it is recommended that CMs provide the capability to use new algorithms via the Secure Software Download mechanism.

		SPEC CHANGE #11

		TYPE OF CHANGE:

		TECHNICAL:

		EDITORIAL:

		BOTH:

		SECTION #

		TITLE

		PARAGRAPH / TABLE # / GRAPHIC #

		7.5.7

		General Operation

		

[bookmark: API_ID211791][bookmark: _Toc535742251]General Operation

REQ23177 The CMTS MUST reject a Service Flow if the CMTS does not have the capability to support the Quality of Service parameters for the flow. For example, if the CMTS only supports certain Grant Intervals for Unsolicited Grant Service, it is required to reject a Service Flow request for a Grant Interval other than a supported value.

[bookmark: API_ID211794]Static Operation

Static configuration of QoS Classifiers, Upstream Drop Classifiers, and Service Flows uses the Registration process. A provisioning server provides the CM with configuration information. The CM passes this information to the CMTS in a Registration Request. The CMTS adds information and replies with a Registration Response. The CM sends a Registration Acknowledge to complete registration.

[image: see attached image: Aspose.Words.cb8d3932-74ee-42b7-ac62-b31c502f13e2.104.png]

[bookmark: _Toc535741755][bookmark: API_ID211796]Figure 114 - Registration Message Flow

A TFTP configuration file consists of one or more instances of QoS Classifiers, Upstream Drop Classifiers, and Service Flow Encodings and Aggregate Service Flow Encodings. QoS and Upstream Drop Classifiers are loosely ordered by 'priority'. Each QoS Classifier refers to a Service Flow via a 'service flow reference'. Several QoS Classifiers may refer to the same Service Flow. Additionally, more than one QoS Classifier or Upstream Drop Classifier may have the same priority, and in this case, the particular classifier used is not defined. Upstream Drop Classifiers do not refer to a particular configured Service Flow, instead they drop packets.

Service Flow Encodings contain either a full definition of service attributes (omitting defaultable items if desired) or a service class name. A service class name is an ASCII string which is known at the CMTS and which indirectly specifies a set of QoS Parameters. (Refer to Section 7.5.3 and Error Message subsection in Annex C.) Aggregate Service Flow Encodings contain either a full definition of service attributes or a ASF QoS Profile Name. (Refer to Section 7.6 & 7.7)

NOTE: At the time of the TFTP configuration file, Service Flow References (or ASF References) exist as defined by the provisioning server. Service Flow Identifiers (or ASF Identifiers) do not yet exist because the CMTS is unaware of these service flow definitions.

The Registration Request packet contains Downstream Classifiers (if to be immediately activated) and all Inactive Service Flows. The configuration file, and thus the Registration Request generally does not contain a Downstream Classifier if the corresponding Service Flow is requested with deferred activation. This allows for late binding of the Classifier when the Flow is activated.

The Registration Response sets the QoS Parameter Sets according to the Quality of Service Parameter Set Type in the Registration Request.

The Registration Response preserves the Service Flow Reference attribute, so that the Service Flow Reference can be associated with SFID and/or SID Cluster (SID when no TCC encoding is included in the Registration Response). (Refer to Section 7.7, for details on ASF creation)

The SFID is chosen by the CMTS to identify a downstream or upstream service Flow that has been authorized but not activated. A DSC-Request from a modem to admit or activate a Provisioned Service Flow contains its SFID. If it is a downstream Flow then the Downstream Classifier is also included.

Dynamic Operation

On the fly provisioning and instantiation of QoS Classifiers, Upstream Drop Classifiers, Service Flows and Aggregate Service flows are enabled by the Dynamic Services. A CMTS or CM can initiate this configuration with a DSx-Request message. The CM or CMTS processes the request, adds information and replies with a DSx-Response. The CMTS or CM send a DSx-Acknowledge message to complete the transaction.

[bookmark: API_ID211798]Dynamic Service Flow Creation – CM Initiated

Service Flows may be created by the Dynamic Service Addition process, as well as through the Registration process outlined above. The Dynamic Service Addition may be initiated by either the CM or the CMTS, and may create one upstream and/or one downstream dynamic Service Flow(s). A three-way handshake is used to create Service Flows. The CM-initiated protocol is illustrated in Figure 115 and described in detail in Section 11.2.2.1.

[image: see attached image: Aspose.Words.cb8d3932-74ee-42b7-ac62-b31c502f13e2.105.png]

[bookmark: _Ref513230170][bookmark: _Toc535741756][bookmark: API_ID211800]Figure 115 - Dynamic Service Addition Message Flow - CM Initiated

A DSA-Request from a CM contains Service Flow Reference(s), QoS Parameter set(s) (marked either for admission-only or for admission and activation) and any required Classifiers. A CM-initiated DSA-Request does not contain Upstream Drop Classifiers. A CM-initiated DSA-Request cannot contain Aggregate Service Flow, ASFs are setup only using CMTS-initiated dynamic service flow creation

[bookmark: API_ID211802]Dynamic Service Flow Creation - CMTS Initiated

A DSA-Request from a CMTS contains Service Flow Identifier(s) for one upstream and/or one downstream Service Flow, possibly one or more SID Cluster Encodings, set(s) of active or admitted QoS Parameters, and any required Classifier(s). A DSA-Request from a CMTS can contain Aggregate Service Flow encodings. A CMTS-initiated DSA-Request does not contain Upstream Drop Classifiers. The protocol is as illustrated in Figure 116, and is described in detail in Section 11.2.2.2.

[image: see attached image: Aspose.Words.cb8d3932-74ee-42b7-ac62-b31c502f13e2.106.png]

[bookmark: _Ref513230171][bookmark: _Toc535741757][bookmark: API_ID211804]Figure 116 - Dynamic Service Addition Message Flow - CMTS Initiated

[bookmark: API_ID211805]Dynamic Service Flow Modification and Deletion

In addition to the methods presented above for creating service flows, protocols are defined for modifying and deleting service flows (refer to Section 11.2.3 and Section 11.2.4).

Both provisioned and dynamically created Service flows are modified with the DSC message, which can change the Admitted and Active QoS Parameter sets of the flow. The CM initiated and CMTS initiated DSC can perform the following actions:

Aadd, replace, or delete QoS classifiers. The CMTS-initiated DSC can change or delete Aggregate Service Flows.

The CMTS-initiated DSC can also add, replace, or delete Upstream Drop Classifiers. REQ23178 The CMTS MUST reject a CM-initiated DSC containing a DSC action to add, replace, or delete an Upstream Drop Classifier. The DSC cannot be used to change Service Flow SID Clusters. REQ23179 The CM MUST reject a CMTS-initiated DSC which attempts to change Service Flow SID Clusters.

A successful DSC transaction changes a Service Flow's QoS parameters by replacing both the Admitted and Active QoS parameter sets. If the message contains only the Admitted set, the Active set is set to null and the flow is deactivated. If the message contains neither set ('000' value used for Quality of Service Parameter Set type, see the subsection Quality of Service Parameter Set Type in Annex C) then both sets are set to null and the flow is de-admitted. When the message contains both QoS parameter sets, the Admitted set is checked first and, if admission control succeeds, the Active set in the message is checked against the Admitted set in the message to ensure that it is a subset (see Section 7.5.1.1). If all checks are successful, the QoS parameter sets in the message become the new Admitted and Active QoS parameter sets for the Service Flow. If either of the checks fails, the DSC transaction fails and the Service Flow QoS parameter sets are unchanged.

The DSD cannot be used to delete Upstream Drop Classifiers.

		SPEC CHANGE #12

		TYPE OF CHANGE:

		TECHNICAL:

		EDITORIAL:

		BOTH:

		SECTION #

		TITLE

		PARAGRAPH / TABLE # / GRAPHIC #

		6.4.12

And subsequent sections

		Dynamic Service Addition-

		

[bookmark: API_ID210209][bookmark: _Toc535742172]Dynamic Service Addition – Request (DSA-REQ)

REQ25898 A Dynamic Service Addition Request MAY be sent by a CM or CMTS to create a new Service Flow. A CMTS MAY send a Dynamic Service Addition Request to create a new Aggregate Service Flow.

[image:]

[bookmark: _Ref513230075][bookmark: _Ref535411093][bookmark: _Toc535741697][bookmark: API_ID210211]Figure 56 - Dynamic Service Addition - Request

REQ22483 A CM or CMTS MUST generate DSA-REQ messages in the form shown in Figure 56 - Dynamic Service Addition - Request including the following parameter:

REQ22483.1 Transaction ID: Unique identifier for this transaction assigned by the sender.

All other parameters are coded as TLV tuples as defined in Annex C. REQ22484 A DSA-REQ message transmitted by a CM or CMTS MUST NOT contain parameters for more than one Service Flow in each direction, i.e., a DSA-REQ message contains parameters for either a single upstream Service Flow, or for a single downstream Service Flow, or for one upstream and one downstream Service Flow.

A DSA-REQ message transmitted by the CMTS MUST NOT contain parameters for more than one Aggregate Service Flow in each direction, i.e., a DSA-REQ message contains parameters for either a single upstream Aggregate Service Flow or for a single downstream Aggregate Service Flow, or for one upstream and one downstream Aggregate Service Flow. In each of these cases the DSA-REQ message contains parameters for the ASF and its constituent individual Service flows.

REQ22485 The DSA-REQ message transmitted by a CM or CMTS MUST contain:

REQ22485.1 Service Flow Parameters: Specification of the Service Flow's traffic characteristics and scheduling requirements. These can also be parameters for the Aggregate Service Flow and the parameters for the constituent individual Service flows

REQ25899 The DSA-REQ message transmitted by a CM or CMTS MAY contain classifier parameters associated with the Service Flows specified in the message. REQ22486 If included, the CM or CMTS MUST comply with the following rules for classifier parameters:

REQ22486.1 Classifier Parameters: Specification of the rules to be used to classify packets into a specific Service Flow.

REQ22487 If Privacy is enabled, the DSA-REQ message transmitted by a CM or CMTS MUST contain:

REQ22487.1 Key Sequence Number: The key sequence number of the Auth Key, which is used to calculate the HMAC-Digest (see the subsection Key Sequence Number in Annex C).

REQ22487.2 HMAC-Digest: The HMAC-Digest Attribute is a keyed message digest (to authenticate the sender). The HMAC-Digest Attribute is the final Attribute in the Dynamic Service message's Attribute list (see the subsection HMAC-Digest in Annex C).

[bookmark: API_ID210225]CM-Initiated Dynamic Service Addition

REQ22488 The CM MUST use the Service Flow Reference to link Classifiers to Service Flows when generating a CM initiated DSA-REQ. REQ22489 Values of the Service Flow Reference are local to the DSA message; each Service Flow within the DSA-Request MUST be assigned a unique Service Flow Reference by the CM. This value need not be unique with respect to the other service flows known by the sender.

REQ22491 Values of the Classifier Reference are local to the DSA message; each Classifier within the DSA-request MUST be assigned a unique Classifier Reference by the CM.

REQ25900 CM-initiated DSA-REQ messages MAY use the Service Class Name (see the subsection Service Class Name in Annex C) in place of some, or all, of the QoS Parameters.

[bookmark: API_ID210231]CMTS-Initiated Dynamic Service Addition

REQ22492 CMTS-initiated DSA-Requests MUST use the Service Flow ID to link Classifiers to Service Flows. Service Flow Identifiers are unique within the MAC domain. REQ22493 CMTS-initiated DSA-Requests for Upstream Service Flows MUST also include a Service ID. CMTS-initiated DSA-Requests for ASFs MUST use the Service Flow ID to link Classifiers to Service Flows, and the ASF ID to link the individual service flows to the ASF. ASF Identifiers are unique within the MAC domain.

REQ22494 CMTS-initiated DSA-Requests which include Classifiers, MUST assign a unique Classifier Identifier on a per Service Flow basis.

REQ22495 CMTS-initiated DSA-Requests for named Service Classes MUST include the QoS Parameter Set associated with that Service Class.

REQ22496 CMTS-initiated DSA-Requests sent to a CM in a Multiple Transmit Channel Mode of operation MUST include Service Flow SID Cluster Assignments.

[bookmark: API_ID210238][bookmark: _Toc535742173]Dynamic Service Addition - Response (DSA-RSP)

REQ22497 A Dynamic Service Addition Response MUST be generated in response to a received DSA-Request by a CM or CMTS. REQ22498 The format of a DSA-RSP used by a CM or CMTS MUST be as shown in Figure 57 - Dynamic Service Addition - Response.

[image:]

[bookmark: _Ref513230076][bookmark: _Ref535411166][bookmark: _Toc535741698][bookmark: API_ID210241]Figure 57 - Dynamic Service Addition - Response

REQ22499 The parameters of DSA-RSP transmitted by a CM or CMTS MUST be as follows:

REQ22499.1 Transaction ID: Transaction ID from corresponding DSA-REQ.

REQ22499.2 Confirmation Code: The appropriate Confirmation Code (the Confirmation Code subsection in Annex C) for the entire corresponding DSA-Request.

All other parameters are coded as TLV tuples as defined in Annex C.

If the transaction is successful, the DSA-RSP contains one or more of the following:

REQ22500 Classifier Parameters: The CMTS MUST include the complete specification of the Classifier in the DSA-RSP, including a newly assigned Classifier Identifier. REQ22501 The CM MUST NOT include the specification of the Classifier in the DSA-RSP.

REQ22502 Service Flow Parameters: The CMTS MUST include the complete specification of the Service Flow in the DSA-RSP, including a newly assigned Service Flow Identifier and an expanded Service Class Name if applicable. REQ22503 The CM MUST NOT include the specification of the Service Flow in the DSA-RSP. The CM MUST NOT include the specification of the Aggregate Service Flow in the DSA-RSP.

REQ22506 If the transaction is unsuccessful due to Service Flow Parameters or Classifier Parameters and the Confirmation Code is not one of the major error codes in the Confirmation Code subsection in Annex C, the DSA-RSP transmitted by the CM or CMTS MUST contain at least one of the following:

REQ22506.1 Service Flow Error Set: A Service Flow Error Set and identifying Service Flow Reference/Identifier is included for at least one failed Service Flow in the corresponding DSA-REQ. Every Service Flow Error Set includes at least one specific failed QoS Parameter of the corresponding Service Flow. This parameter is omitted if the entire DSA-REQ is successful.

REQ22506.2 Classifier Error Set: A Classifier Error Set and identifying Classifier Reference/Identifier and Service Flow Reference/Identifier pair is included for at least one failed Classifier in the corresponding DSA-REQ. Every Classifier Error Set includes at least one specific failed Classifier Parameter of the corresponding Classifier. This parameter is omitted if the entire DSA-REQ is successful.

REQ22507 If Privacy is enabled, the DSA-RSP message transmitted by the CM or CMTS MUST contain:

REQ22507.1 Key Sequence Number: The key sequence number of the Auth Key, which is used to calculate the HMAC-Digest (see the Key Sequence Number subsection in Annex C).

REQ22507.2 HMAC-Digest: The HMAC-Digest Attribute is a keyed message digest (to authenticate the sender). The HMAC-Digest Attribute is the final Attribute in the Dynamic Service message's Attribute list (see the HMAC-Digest subsection in Annex C).

[bookmark: API_ID210259]CM-Initiated Dynamic Service Addition

REQ22508 The CMTS's DSA-Response for Service Flows that are successfully added MUST contain a Service Flow ID. REQ22509 The CMTSs DSA-Response for successfully Admitted or Active upstream QoS Parameter Sets MUST also contain a Service ID.

REQ22510 If the corresponding DSA-Request uses the Service Class Name (see the Service Class Name subsection in Annex C) to request service addition, the CMTS's DSA-Response MUST contain the QoS Parameter Set associated with the named Service Class. REQ22511 If the Service Class Name is used in conjunction with other QoS Parameters in the DSA-Request, the CMTS MUST accept or reject the DSA-Request using the explicit QoS Parameters in the DSA-Request. REQ22512 If these Service Flow Encodings conflict with the Service Class attributes, the CMTS MUST use the DSA-Request values as overrides for those of the Service Class.

REQ22513 If the transaction is successful, the CMTS MUST assign a Classifier Identifier to each requested Classifier. REQ22514 The CMTS MUST use the original Classifier Reference(s) and Service Flow Reference(s) to link the successful parameters in the DSA-RSP. REQ22515 If the CM received TCC Encodings in the Registration Response, the CMTS MUST include Service Flow SID Cluster Assignments.

REQ22516 If the transaction is unsuccessful, the CMTS MUST use the original Classifier Reference(s) and Service Flow Reference(s) to identify the failed parameters in the DSA-RSP.

[bookmark: API_ID210269]CMTS-Initiated Dynamic Service Addition

REQ22517 If the transaction is unsuccessful, the CM MUST use the Classifier Identifier(s) and Service Flow Identifier(s) (or Aggregate Service Flow Identifiers) to identify the failed parameters in the DSA-RSP.

[bookmark: API_ID210271][bookmark: _Toc535742174]Dynamic Service Addition – Acknowledge (DSA-ACK)

REQ22518 A Dynamic Service Addition Acknowledge MUST be generated by a CM or CMTS in response to a received DSA-RSP. REQ22519 The format of a DSA-ACK transmitted by a CM or CMTS MUST be as shown in Figure 58 - Dynamic Service Addition - Acknowledge.

[image:]

[bookmark: _Ref513230077][bookmark: _Ref535411290][bookmark: _Toc535741699][bookmark: API_ID210274]Figure 58 - Dynamic Service Addition - Acknowledge

REQ22520 The parameters of a DSA-ACK transmitted by a CM or CMTS MUST be as follows:

REQ22520.1 Transaction ID: Transaction ID from corresponding DSA-Response.

REQ22520.2 Confirmation Code: The appropriate Confirmation Code (the Confirmation Code subsection in Annex C) for the entire corresponding DSA-Response. Note: The confirmation code is necessary particularly when a Service Class Name (refer to Section 7.5.3) is used in the DSA-Request. In this case, the DSA-Response could contain Service Flow parameters that the CM is unable to support (either temporarily or as configured).

All other parameters are coded TLV tuples.

Service Flow Error Set: The Service Flow Error Set of the DSA-ACK message encodes specifics of failed Service Flows in the DSA-RSP message. A Service Flow Error Set and identifying Service Flow Reference/Identifier is included for at least one failed QoS Parameter of at least one failed Service Flow in the corresponding DSA-REQ. This parameter is omitted if the entire DSA-REQ is successful.

REQ22521 If Privacy is enabled, the DSA-RSP message transmitted by the CM or CMTS MUST contain:

REQ22521.1 Key Sequence Number: The key sequence number of the Auth Key, which is used to calculate the HMAC-Digest (see the Key Sequence Number subsection in Annex C).

REQ22521.2 HMAC-Digest: The HMAC-Digest Attribute is a keyed message digest (to authenticate the sender). The HMAC-Digest Attribute is the final Attribute in the Dynamic Service message's Attribute list (see the HMAC-Digest subsection in Annex C).

[bookmark: API_ID210283][bookmark: _Toc535742175]Dynamic Service Change – Request (DSC-REQ)

REQ25901 A Dynamic Service Change Request MAY be sent by a CM or CMTS to dynamically change the parameters of an existing Service Flow. A CMTS MAY send a Dynamic Service Change Request to dynamically change the parameters of an existing Aggregate Service Flow. If a CMTS sends a DSC-REQ message changing an Upstream Drop Classifier, then conceptually the Upstream Drop Classifier is associated with a NULL Service Flow that is not signaled in the DSC-REQ message. REQ22522 DSCs transmitted by a CM or CMTS that are changing classifiers MUST carry the entire classifier TLV set for that new classifier.

[image:]

[bookmark: _Ref513230078][bookmark: _Ref535411385][bookmark: _Toc535741700][bookmark: API_ID210287]Figure 59 - Dynamic Service Change - Request

REQ22523 A CM or CMTS MUST generate DSC-REQ messages in the form shown in Figure 59 - Dynamic Service Change - Request including the following parameters as described below:

Transaction ID: Unique identifier for this transaction assigned by the sender.

All other parameters are coded as TLV tuples as defined in Annex C. REQ22524 A DSC-REQ message transmitted by a CM or CMTS MUST NOT carry parameters for more than one Service Flow in each direction, i.e., a DSC-REQ message contains parameters for either a single upstream Service Flow, or for a single downstream Service Flow, or for one upstream and one downstream Service Flow. A DSC-REQ message transmitted by a CMTS MUST NOT carry parameters for more than one Aggregate Service Flow in each direction, i.e., a DSC-REQ message contains parameters for either a single upstream Aggregate Service Flow, or for a single downstream Aggregate Service Flow, or for one upstream and one downstream Aggregate Service Flow. In each of these cases the DSC-REQ message can contain parameters for the ASF and its constituent individual Service flows.

REQ22525 A DSC-REQ transmitted by a CM or CMTS MUST contain at least one of the following:

Service Flow Parameters: Specification of the Service Flow's (or Aggregate Service Flow’s) new traffic characteristics and scheduling requirements. The Admitted and Active Quality of Service Parameter Sets in this message replace the Admitted and Active Quality of Service Parameter Sets currently in use by the Service Flow. If the DSC message is successful and it contains Service Flow parameters, but does not contain replacement sets for both Admitted and Active Quality of Service Parameter Sets, the omitted set(s) are set to null. If Service Flow Parameters are included, they contain a Service Flow Identifier.

Not all Service Flow Parameters are permitted to be changed via a DSC-REQ message. Reference values and Identifiers (TLVs 24/25.1-3) are unique to a Service Flow (or Aggregate Service Flow), and as such cannot be modified by a CM or CMTS in a DSC-REQ. REQ22526 In addition, the following Service Flow Parameter TLVs MUST NOT be modified by a CM or CMTS via a DSC-REQ:

REQ22526.1 Service Flow Scheduling Type (TLV 24.15).

REQ22526.2 Bit 9 (Segment Header on/off) of the Request/Transmission Policy (TLV 24.16).

REQ22526.3 Multiplier to Number of Bytes Requested (TLV 24.26).

Aggregate Service Flow Identifier (TLV [24/25].47)

Low Latency Service Flow Identifier (TLV [70/71].42.2)

Support for changes to the following Service Flow Parameter TLVs via a DSC-REQ is optional in a receiving CM or CMTS:

Service Class Name (TLV 24/25.4) (only if all the parameters that differ in the new class are allowed to change).

Service Flow Required Attribute Mask (TLV 24/25.31).

Service Flow Forbidden Attribute Mask (TLV 24/25.32).

Service Flow Attribute Aggregation Rule Mask (TLV 24/25.33).

Application Identifier (TLV 24/25.34).

Vendor Specific QoS Parameters (TLV 24/25.43).

REQ25902 If changes to these parameters are specified in a DSC-REQ, the receiving CM or CMTS MAY implement the change. Since support for these changes is optional, they might be rejected by the receiving entity. REQ22527 Changes to all other Service Flow Parameters via a DSC-REQ message MUST be supported by both CMs and CMTSs.

Classifier Parameters: Specification of the rules to be used to classify packets into a specific service flow - this includes the Dynamic Service Change Action TLV which indicates whether this Classifier should be added, replaced or deleted from the Service Flow (see subsection in Dynamic Service Change Action in Annex C). If included, the Classifier Parameters contains the Dynamic Change Action TLV, a Classifier Reference/Identifier and a Service Flow Identifier.

Not all Classifier Parameters are permitted to be changed via a DSC-REQ message. Reference values and Identifiers (TLVs 22/23/60.1-4) are unique to a Classifier, and as such cannot be modified by a CM or CMTS in a DSC-REQ. REQ25903 If changes are specified to Vendor Specific QoS Parameters (TLV 22/23/60.43) in a DSC-REQ, the receiving CM or CMTS MAY implement the change. Since support for changes to these parameters is optional, they might be rejected by the receiving entity. REQ22528 Changes to all other Classifier Parameters via a DSC-REQ message MUST be supported by both CMs and CMTSs.

REQ22532 If Privacy is enabled, a DSC-REQ transmitted by the CM or CMTS MUST also contain:

REQ22532.1 Key Sequence Number: The key sequence number of the Auth Key, which is used to calculate the HMAC-Digest (refer the Key Sequence Number subsection in Annex C).

REQ22532.2 HMAC-Digest: The HMAC-Digest Attribute is a keyed message digest (to authenticate the sender). The HMAC-Digest Attribute is the final Attribute in the Dynamic Service message's Attribute list (refer to the HMAC-Digest subsection in Annex C).

[bookmark: API_ID210308][bookmark: _Toc535742176]Dynamic Service Change – Response (DSC-RSP)

REQ22533 A Dynamic Service Change Response MUST be generated by a CM or CMTS in response to a received DSC-REQ.

[image:]

[bookmark: _Ref513230079][bookmark: _Ref535412197][bookmark: _Toc535741701][bookmark: API_ID210310]Figure 60 - Dynamic Service Change - Response

REQ22534 A CM or CMTS MUST generate DSC-RSP messages in the form shown in Figure 60 - Dynamic Service Change - Response including the following parameters as described below:

Transaction ID: Transaction ID from the corresponding DSC-REQ.

Confirmation Code: The appropriate Confirmation Code (refer to the subsection Confirmation Code in Annex C) for the corresponding DSC-Request.

All other parameters are coded as TLV tuples as defined in Annex C.

If the transaction is successful, the DSC-RSP contains one or more of the following:

REQ22535 Classifier Parameters: The CMTS MUST include the complete specification of the Classifier in the DSC-RSP, including a newly assigned Classifier Identifier for new Classifiers. REQ22536 The CM MUST NOT include the specification of the Classifier in the DSC-RSP.

REQ22537 Service Flow Parameters: The CMTS MUST include the complete specification of the Service Flow in the DSC-RSP, including an expanded Service Class Name if applicable. REQ22538 The CMTS MUST include a SID in the DSC-RSP if a Service Flow Parameter Set contained an upstream Admitted QoS Parameter Set and this Service Flow does not have an associated SID. REQ22539 If a Service Flow Parameter set contained a Service Class Name and an Admitted QoS Parameter Set, the CMTS MUST include the QoS Parameter Set corresponding to the named Service Class in the DSC-RSP. REQ22540 If specific QoS Parameters were also included in the Service Flow request which also included a Service Class Name, the CMTS MUST include these QoS Parameters in the DSC-RSP instead of any QoS Parameters of the same type of the named Service Class. REQ22541 The CM MUST NOT include the specification of the Service Flow (or Aggregate Service Flow) in the DSC-RSP.

REQ22544 If the transaction is unsuccessful due to Service Flow Parameters or Classifier Parameters and the Confirmation Code is not one of the major error codes in Annex C, the DSC-RSP transmitted by the CM or CMTS MUST contain at least one of the following:

REQ22544.1 Classifier Error Set: A Classifier Error Set and identifying Classifier Reference/Identifier and Service Flow Reference/Identifier pair is included for at least one failed Classifier in the corresponding DSC-REQ. Every Classifier Error Set includes at least one specific failed Classifier Parameter of the corresponding Classifier. This parameter is omitted if the entire DSC-REQ is successful.

REQ22544.2 Service Flow Error Set: A Service Flow Error Set and identifying Service Flow ID is included for at least one failed Service Flow in the corresponding DSC-REQ. Every Service Flow Error Set includes at least one specific failed QoS Parameter of the corresponding Service Flow. This parameter is omitted if the entire DSC-REQ is successful.

REQ22545 Regardless of success or failure, if Privacy is enabled for the CM the DSC-RSP transmitted by a CM or CMTS MUST contain:

REQ22545.1 Key Sequence Number: The key sequence number of the Auth Key, which is used to calculate the HMAC-Digest (refer to the Key Sequence Number subsection of Annex C.

REQ22545.2 HMAC-Digest: The HMAC-Digest Attribute is a keyed message digest (to authenticate the sender). The HMAC-Digest Attribute is the final Attribute in the Dynamic Service message's Attribute list (see the subsection HMAC-Digest in Annex C).

[bookmark: API_ID210329][bookmark: _Toc535742177]Dynamic Service Change – Acknowledge (DSC-ACK)

REQ22546 A Dynamic Service Change Acknowledge MUST be generated by a CM or CMTS in response to a received DSC-RSP.

[image:]

[bookmark: _Ref513230080][bookmark: _Ref535412282][bookmark: _Toc535741702][bookmark: API_ID210331]Figure 61 - Dynamic Service Change - Acknowledge

REQ22547 A CM or CMTS MUST generate DSC-ACK messages in the form shown in Figure 61 - Dynamic Service Change - Acknowledge including the following parameters as described below:

REQ22547.1 Transaction ID: Transaction ID from the corresponding DSC-REQ.

REQ30250 Confirmation Code: The appropriate Confirmation Code (the subsection Confirmation Code in Annex C) for the entire corresponding DSC-Response. Note: The Confirmation Code and Service Flow Error Set are necessary particularly when a Service Class Name is (refer to Section 7.5.3) used in the DSC-Request. In this case, the DSC-Response could contain Service Flow parameters that the CM is unable to support (either temporarily or as configured).

REQ22547.2 All other parameters are coded TLV tuples.

REQ22547.3 Service Flow Error Set: The Service Flow Error Set of the DSC-ACK message encodes specifics of failed Service Flows in the DSC-RSP message. A Service Flow Error Set and identifying Service Flow Identifier is included for at least one failed QoS Parameter of at least one failed Service Flow in the corresponding DSC-REQ. This parameter is omitted if the entire DSC-REQ is successful.

REQ22548 If Privacy is enabled, the DSC-ACK message transmitted by the CM or CMTS MUST contain:

REQ22548.1 Key Sequence Number: The key sequence number of the Auth Key, which is used to calculate the HMAC-Digest (see the subsection Key Sequence Number in Annex C).

REQ22548.2 HMAC-Digest: The HMAC-Digest Attribute is a keyed message digest (to authenticate the sender). The HMAC-Digest Attribute is the final Attribute in the Dynamic Service message's Attribute list (see the subsection HMAC-Digest in Annex C).

[bookmark: API_ID210343][bookmark: _Toc535742178]Dynamic Service Deletion – Request (DSD-REQ)

REQ25905 A DSD-Request MAY be sent by a CM or CMTS to delete a single existing Upstream Service Flow and/or a single existing Downstream Service Flow. A DSD-Request MAY be sent by a CMTS to delete a single existing Upstream Aggregate Service Flow and/or a single existing Downstream Aggregate Service Flow.

When an ASF is deleted (using the ASFID), the individual SFs under the ASF are automatically deleted. This happens silently, i.e. no additional DSD transactions are sent by the CMTS to the CM. When the CM receives a DSD-REQ to delete an Aggregate Service flow, it MUST delete the ASF as well as the constituent individual service flows. The CMTS MUST NOT attempt to delete an individual SF under an ASF. The CM MUST reject an attempt to delete an individual SF under an ASF.

[image:]

[bookmark: _Ref513230081][bookmark: _Ref535412367][bookmark: _Toc535741703][bookmark: API_ID210345]Figure 62 - Dynamic Service Deletion - Request

REQ22549 A CM or CMTS MUST generate DSD-REQ messages in the form shown in Figure 62 - Dynamic Service Deletion - Request including the following parameters as described below:

REQ22549.1 Service Flow Identifier: If this value is non-zero, it is the SFID of a single Upstream or single Downstream Service Flow (or the ASFID of the Aggregate Service Flow) to be deleted. If this value is zero, the Service Flow(s) to be deleted will be identified by SFID(s) in the TLVs. If this value is non-zero, any SFIDs included in the TLVs are ignored.

REQ22549.2 Transaction ID: Unique identifier for this transaction assigned by the sender.

REQ22549.3 Reserved: Used to align the message along 32-bit boundaries.

REQ22549.4 All other parameters are coded as TLV tuples as defined in Annex C.

REQ22549.5 Service Flow Identifier: The SFID(s) (or ASFIDs) to be deleted, encoded per the subsection Service Flow Identifier in Annex C. The Service Flow Identifier TLV is the only Service Flow Encoding sub-TLV used. For an ASF, the CMTS only uses the ASFIDs. The CMTS MUST NOT send a DSD-REQ message with both the ASF ID and the individual SF IDs.

REQ22550 If Privacy is enabled, the DSD-REQ transmitted by a CM or CMTS MUST include:

REQ22550.1 Key Sequence Number: The key sequence number of the Auth Key, which is used to calculate the HMAC-Digest (see the subsection Key Sequence Number in Annex C).

REQ22550.2 HMAC-Digest: The HMAC-Digest Attribute is a keyed message digest (to authenticate the sender). The HMAC-Digest Attribute is the final Attribute in the Dynamic Service message's Attribute list (see the subsection HMAC-Digest in Annex C).

[bookmark: API_ID210358][bookmark: _Toc535742179]Dynamic Service Deletion – Response (DSD-RSP)

REQ22551 A DSD-RSP MUST be generated by a CM or CMTS in response to a received DSD-REQ.

[image:]

[bookmark: _Ref513230082][bookmark: _Ref535412426][bookmark: _Toc535741704][bookmark: API_ID210360]Figure 63 - Dynamic Service Deletion - Response

REQ22552 A CM or CMTS MUST generate DSD-RSP messages in the form shown in Figure 63 - Dynamic Service Deletion - Response including the following parameters as described below:

REQ22552.1 Transaction ID: Transaction ID from the corresponding DSD-REQ.

REQ22552.2 Confirmation Code: The appropriate Confirmation Code (the subsection Confirmation Code in Annex C) for the corresponding DSD-Request.

REQ22552.3 Reserved: Used to align the message along 32-bit boundaries.

		SPEC CHANGE #13

		TYPE OF CHANGE:

		TECHNICAL:

		EDITORIAL:

		BOTH:

		SECTION #

		TITLE

		PARAGRAPH / TABLE # / GRAPHIC #

		

		

		

[bookmark: API_ID213551][bookmark: _Toc535742351]Dynamic Service Flow Changes

Service Flows may be created, changed or deleted. Similarly Aggregate Service Flows can be created, changed or deleted. This is accomplished through a series of MAC management messages referred to as Dynamic Service Addition (DSA), Dynamic Service Change (DSC) and Dynamic Service Deletion (DSD). The DSA messages create a new Service Flow/Aggregate Service FLow. The DSC messages change an existing Service Flow/Aggregate Service Flow. The DSD messages delete a single existing Upstream and/or a single existing Downstream Service Flow or Aggregate Service Flow. This is illustrated in Figure 194.

The subsequent sections and sub-sections describe the Dynamic service messages and state machines. While these descriptions and diagrams are centered around the concept of creating/changing/deleting Service Flows, they also apply to the concept of creating/changing/deleting Aggregate Service Flows. In this context, service Flow IDs and parameters can be replaced by Aggregate Service Flow IDs and parameters, and their constituent individual Service Flows. Aggregate Service Flows may be created, changed or deleted only via CMTS-initiated DSx messages.

[image: see attached image: Aspose.Words.cb8d3932-74ee-42b7-ac62-b31c502f13e2.172.png]

[bookmark: _Ref513230228][bookmark: _Toc535741835][bookmark: API_ID213553]Figure 194 - Dynamic Service Flow Overview

The Null state implies that no Service Flow exists that matches the SFID and/or TransactionID in a message. Once the Service Flow exists, it is operational and has an assigned SFID. In steady state operation, a Service Flow resides in a Nominal state. When Dynamic Service messaging is occurring, the Service Flow may transition through other states, but remains operational. Since multiple Service Flows may exist, there may be multiple state machines active, one for every Service Flow. Dynamic Service messages only affect those state machines that match both the SFID and Transaction ID or SFID only. For a Dynamic Service Change that is modifying an Upstream Drop Classifier, the Service Flow is conceptually the NULL Service Flow and is not signaled in the message. A Transaction ID which is reused for other SFID(s) indicates that the other side terminated the previous transaction. If a Dynamic Service request message is received which refers to the same Transaction ID as one that has already been processed, but service flow(s) other than those locked in this transaction, the device MAY trigger a DSx Ended input to the state machine(s) of SF(s) involved in the previous transaction. REQ23913 If privacy is enabled, both the CM and CMTS MUST verify the HMAC digest on all dynamic service messages before processing them, and discard any messages that fail.

Service Flows created at registration time effectively enter the SF_operational state without a DSA transaction.

TransactionIDs are unique per transaction and are selected by the initiating device (CM or CMTS). To help prevent ambiguity and provide simple checking, the TransactionID number space is split between the CM and CMTS. REQ23914 The CM MUST select its TransactionIDs from the first half of the number space (0x0000 to 0x7FFF). REQ23915 The CMTS MUST select its TransactionIDs from the second half of the number space (0x8000 to 0xFFFF).

Each dynamic service message sequence is a unique transaction with an associated unique transaction identifier. REQ27589 To help support transaction identifier uniqueness between two devices in different states, the CM or CMTS initiating the transaction SHOULD change the transaction identifier for each new initiated transaction. REQ23916 The CM or CMTS initiating the transaction MUST wait at least T10 to re-use the transaction identifier. The DSA/DSC transactions consist of a request/response/acknowledge sequence. In the case of a DSC message that is modifying an Upstream Drop Classifier, the acknowledge is not required and its absence does not result in a failed transaction. The DSD transactions consist of a request/response sequence. REQ23917 The response messages transmitted by the CM or CMTS MUST contain a confirmation code of okay unless some exception condition was detected. REQ23918 The acknowledge messages transmitted by the CM or CMTS MUST include the confirmation code in the response unless a new exception condition arises. A more detailed state diagram, including transition states, is shown in Figure 195. The detailed actions for each transaction are given in the following sections.

		SPEC CHANGE #14

		TYPE OF CHANGE:

		TECHNICAL:

		EDITORIAL:

		BOTH:

		SECTION #

		TITLE

		PARAGRAPH / TABLE # / GRAPHIC #

		

		

		

[bookmark: _Toc535742353][bookmark: API_ID213583]Dynamic Service Addition

[bookmark: API_ID213584]CM Initiated Dynamic Service Addition

A CM wishing to create an upstream and/or a downstream Service Flow sends a request to the CMTS using a dynamic service addition request message (DSA-REQ). The CMTS checks the CM's authorization for the requested service(s) and whether the QoS requirements can be supported and generates an appropriate response using a dynamic service addition response message (DSA-RSP). The CM concludes the transaction with an acknowledgment message (DSA-ACK).

In order to facilitate a common admission response, an upstream and a downstream Service Flow can be included in a single DSA-REQ. Both Service Flows are either accepted or rejected together.

[image:]

[bookmark: _Toc535741843][bookmark: API_ID213586]Figure 202 - Dynamic Service Addition Initiated from CM

[bookmark: API_ID213587]CMTS Initiated Dynamic Service Addition

A CMTS wishing to establish an upstream and/or a downstream dynamic Service Flow(s) (or Aggregate Service Flow) with a CM performs the following operations. The CMTS checks the authorization of the destination CM for the requested class of service and whether the QoS requirements can be supported. If the service can be supported the CMTS generates new SFID(s) with the required class of service and informs the CM using a dynamic service addition request message (DSA-REQ). The CM checks that it can support the service and responds using a dynamic service addition response message (DSA-RSP). The transaction completes with the CMTS sending the acknowledge message (DSA-ACK).

[image:]

[bookmark: _Toc535741844][bookmark: API_ID213589]Figure 203 - Dynamic Service Addition Initiated from CMTS

		SPEC CHANGE #15

		TYPE OF CHANGE:

		TECHNICAL:

		EDITORIAL:

		BOTH:

		SECTION #

		TITLE

		PARAGRAPH / TABLE # / GRAPHIC #

		

		

		

[bookmark: API_ID213600][bookmark: _Toc535742354]Dynamic Service Change

The Dynamic Service Change (DSC) set of messages is used to modify the flow parameters associated with a Service Flow , Aggregate Service Flow or a set of Upstream Drop Classifiers. Conceptually, Upstream Drop Classifiers are associated with a NULL Service Flow that is not signaled in the messages. Specifically, DSC can:

Modify the Service Flow Specification or a set of Upstream Drop Classifiers

Add, Delete or Replace a Flow Classifier or a set of Upstream Drop Classifiers

Modify the Aggregate Service Flow Specification or its constituent Individual Service Flows. (CMTS-Initiated only)

A single DSC message exchange can modify the parameters of one downstream service flow and/or one upstream service flow. A single DSC message can modify multiple Upstream Drop Classifiers. REQ23925 If a CMTS is sending a DSC message that is modifying Upstream Drop Classifiers, it MUST NOT modify downstream or upstream Service Flow parameters. If a DSC is changing an Upstream Drop Classifier, then the term Service Flow used below, refers to the conceptual NULL Service Flow.

To prevent packet loss, any change to the bandwidth parameters of a Service Flow needs to be coordinated between the application generating the data and the DSC that modifies the Service Flow. Because MAC messages can be lost, the timing of Service Flow parameter changes can vary, and it occurs at different times in the CM and CMTS. Applications should reduce their transmitted data bandwidth before initiating a DSC to reduce the Service Flow bandwidth, and should not increase their transmitted data bandwidth until after the completion of a DSC increasing the Service Flow bandwidth.

The CMTS controls both upstream and downstream scheduling. Scheduling is based on data transmission requests and is subject to the limits contained in the current Service Flow parameters at the CMTS. The timing of Service Flow parameter changes, and any consequent scheduling changes, is independent of both direction and whether there is an increase or decrease in bandwidth. The CMTS changes Service Flow parameters on receipt of a DSC-REQ (CM-initiated transaction) or DSC-RSP (CMTS-initiated transaction).

The CMTS also controls the downstream transmit behavior. The change in downstream transmit behavior is always coincident with the change in downstream scheduling (i.e., CMTS controls both and changes both simultaneously).

The CM controls the upstream transmit requests, subject to limits contained in the current Service Flow parameters at the CM. The timing of Service Flow parameter changes in the CM, and any consequent CM transmit request behavior changes, is a function of which device initiated the transaction. The CM changes Service Flow parameters on receipt of a DSC-REQ (CMTS-initiated transaction) or DSC-RSP (CM-initiated transaction).

Any service flow can be deactivated with a Dynamic Service Change command by sending a DSC-REQ message, referencing the Service Flow Identifier, and including a null ActiveQoSParameterSet. REQ23926 However, if a Primary Service Flow of a CM is deactivated that CM is de-registered and MUST re-register. Therefore, care should be taken before deactivating such Service Flows. REQ23927 If a Service Flow that was provisioned during registration is deactivated, the provisioning information for that Service Flow MUST be maintained until the Service Flow is reactivated.

REQ23928 A CM MUST have only one DSC transaction outstanding per Service Flow. REQ23929 If it detects a second transaction initiated by the CMTS, the CM MUST abort the transaction it initiated and allow the CMTS initiated transaction to complete.

REQ23930 A CMTS MUST have only one DSC transaction outstanding per Service Flow. REQ23931 If it detects a second transaction initiated by the CM, the CMTS MUST abort the transaction the CM initiated and allow the CMTS initiated transaction to complete.

NOTE: 	Currently anticipated applications would probably control a Service Flow through either the CM or CMTS, and not both. Therefore the case of a DSC being initiated simultaneously by the CM and CMTS is considered as an exception condition and treated as one.

[bookmark: API_ID213611]CM-Initiated Dynamic Service Change

A CM that needs to change a Service Flow definition performs the following operations.

The CM informs the CMTS using a Dynamic Service Change Request message (DSC-REQ). REQ23932 The CMTS MUST decide if the referenced Service Flow can support this modification. REQ23933 The CMTS MUST respond with a Dynamic Service Change Response (DSC-RSP) indicating acceptance or rejection. REQ23934 The CM reconfigures the Service Flow if appropriate, and then MUST respond with a Dynamic Service Change Acknowledge (DSC-ACK).

[image:]

[bookmark: _Toc535741854][bookmark: API_ID213616]Figure 213 - CM-Initiated DSC

[bookmark: API_ID213617]CMTS-Initiated Dynamic Service Change

A CMTS initiated DSC transaction that is changing Upstream Drop Classifiers does not require the CMTS to send a DSC-ACK after receiving a DSC-RSP from the CM. This is different from a CMTS initiated DSC transaction that is modifying a Service Flow and results from the fact that the CM cannot send a DSD if the transaction fails. The following paragraphs describe the DSC Transactions for a CMTS initiated DSC that is modifying a Service Flow versus a CMTS initiated DSC transaction that is modifying an Upstream Drop Classifier.

A CMTS that needs to change a Service Flow or Aggregate Service Flow definition performs the following operations.

REQ23935 The CMTS MUST decide if the referenced Service Flow can support this modification. If so, the CMTS informs the CM using a Dynamic Service Change Request message (DSC-REQ). REQ23936 The CM checks that it can support the service change, and MUST respond using a Dynamic Service Change Response (DSC-RSP) indicating acceptance or rejection. REQ23937 The CMTS reconfigures the Service Flow if appropriate, and then MUST respond with a Dynamic Service Change Acknowledgment (DSC-ACK).

[image:]

[bookmark: _Toc535741855][bookmark: API_ID213623]Figure 214 - CMTS-Initiated DSC Modifying a Service Flow

A CMTS that needs to change an Upstream Drop Classifier performs the following operations.

The CMTS informs the CM of the additions or modifications to the Upstream Drop Classifiers using a Dynamic Service Change Request message (DSC-REQ). REQ23938 The CM checks that it can support the service change, and MUST respond using a Dynamic Service Change Response (DSC-RSP) indicating acceptance or rejection. The CMTS updates any state information that it is maintaining concerning the Upstream Drop Classifiers that the CM is using. REQ27475 The CMTS MAY send a Dynamic Service Change Acknowledgment (DSC-ACK). REQ23939 The CM MUST NOT delete the Upstream Drop Classifiers in the case that it does not receive a DSC-ACK message after sending the DSC-RSP.

[image:]

[bookmark: _Ref535423636][bookmark: _Ref535491466][bookmark: _Toc535741856][bookmark: API_ID213629]Figure 215 - CMTS-Initiated DSC Modifying an Upstream Drop Classifier

		SPEC CHANGE #16

		TYPE OF CHANGE:

		TECHNICAL:

		EDITORIAL:

		BOTH:

		SECTION #

		TITLE

		PARAGRAPH / TABLE # / GRAPHIC #

		11.2.4

		Dynamic Service Deletion

		

[bookmark: API_ID213640][bookmark: _Toc535742355]Dynamic Service Deletion

Any service flow (or aggregate service flow) can be deleted with the Dynamic Service Deletion (DSD) messages. When a Service Flow (either provisioned or dynamically created) is deleted, all resources associated with it are released, including classifiers and SID Clusters. REQ23940 If a Primary Service Flow of a CM is deleted, that CM is de-registered and MUST re-register. REQ23941 However, the deletion of a provisioned Service Flow other than the Primary Service Flow MUST NOT cause a CM to re-register.

[bookmark: API_ID213644]CM Initiated Dynamic Service Deletion

A CM wishing to delete an upstream and/or a downstream Service Flow generates a delete request to the CMTS using a Dynamic Service Deletion-Request message (DSD-REQ). The CMTS removes the Service Flow(s) and generates a response using a Dynamic Service Deletion-Response message (DSD-RSP). Only one upstream and/or one downstream Service Flow can be deleted per DSD-Request.

[image:]

[bookmark: _Toc535741866][bookmark: API_ID213646]Figure 225 - Dynamic Service Deletion Initiated from CM

[bookmark: API_ID213647]CMTS Initiated Dynamic Service Deletion

A CMTS wishing to delete an upstream and/or a downstream dynamic Service Flow (or Aggregate Service Flow) generates a delete request to the associated CM using a Dynamic Service Deletion-Request message (DSD-REQ). The CM removes the Service Flow(s) (or Aggregate Service Flows) and generates a response using a Dynamic Service Deletion-Response message (DSD-RSP). Only one upstream and/or one downstream Service Flow (or Aggregate Service Flow) can be deleted per DSD-Request.

[image:]

[bookmark: _Toc535741867][bookmark: API_ID213649]Figure 226 - Dynamic Service Deletion Initiated from CMTS

		SPEC CHANGE #17

		TYPE OF CHANGE:

		TECHNICAL:

		EDITORIAL:

		BOTH:

		SECTION #

		TITLE

		PARAGRAPH / TABLE # / GRAPHIC #

		G.1.4

		Provisioning

		Table 139 -

[bookmark: _Toc535742096][bookmark: API_ID216022]Table 139 - Summary of TLV Encodings

		70

		Upstream Aggregate Service Flow Encoding

		DPoE 2.0, 3.1

		Cfg File, REG, DSx

		71

		Downstream Aggregate Service Flow Encoding

		DPoE 2.0, 3.1

		Cfg File, REG, DSx

		SPEC CHANGE #18

		TYPE OF CHANGE:

		TECHNICAL:

		EDITORIAL:

		BOTH:

		SECTION #

		TITLE

		PARAGRAPH / TABLE # / GRAPHIC #

		C.2.2.7.11.4

C.1.2.17

		Target Buffer

Default Upstream Target Buffer Configuration

		-

[bookmark: API_ID215706]Target Buffer

The Target Buffer defines a desired value for the size of the buffer that is to be provided for a service flow. This parameter exists for scenarios in which an ideal value for the size of the buffer has been calculated in order to optimize an application. The specific algorithm by which this parameter might be calculated is not specified here.

If this parameter is omitted or set to a value of 0, for a Low Latency Service Flow within an Aggregate Service Flow or for an individual Service Flow which is configured to use IAQM, the CM SHOULD set the buffer size as per expression (3). When not included in the configuration file or set to a value of 0, for Low Latency Service Flows within an Aggregate Service Flow, the CMTS SHOULD set the buffer size as per expression (3).

LL SF default buffer size = max (10ms * AMSR, 20* MaxPDU) … (3)

where:

AMSR = Aggregate Maximum Sustained Rate of the Aggregate Service Flow, to which the LL SF belongs

MaxPDU = Maximum Packet PDU length (See Section 6.2.5 Extended MAC Frame Length)

If this parameter is omitted or set to a value of 0, for individual service flows not configured to use IAQM, or a Classic Service Flow within an Aggregate Service Flow the device selects any buffer size within the range of the Minimum and Maximum Buffers, via a vendor-specific algorithm.

If this parameter is omitted or set to a value of 0, the device selects any buffer size within the range of the Minimum and Maximum Buffers, via a vendor-specific algorithm.

		Type

		Length

		Value

		[24/25].35.2

		4

		0 - 4294967295 Bytes
Default = 0 (vendor-specific value)

[bookmark: API_ID214602]Default Upstream Target Buffer Configuration

This TLV controls the default size of the upstream service flow buffer when specific Buffer Control parameters (see Section C.2.2.7.11) are not provided.

This Default Upstream Target Buffer Configuration parameter only applies to service flows for which all of the following are true:

1.	The upstream scheduling type is Best Effort, Non-Real-Time Polling or PGS,

2.	The QoS Parameter Set for the flow does not include the Buffer Control TLV (see Section C.2.2.7.11)

3.	The QoS Parameter Set includes a non-zero Max Sustained Traffic Rate (see Section C.2.2.7.2) or a non-zero Peak Traffic Rate (see Section C.2.2.7.10) TLV

4. The service flow is an individual service flow not configured to use IAQM or is a Classic Service Flow within an Aggregate Service Flow

For Low Latency Service Flows within an Aggregate Service Flow, the CM and CMTS set the buffer size as per expression (3), see section C.2.2.7.11.4, on Target Buffer.

REQ27696 When included in the configuration file and not overridden by the Buffer Control TLV, the CM SHOULD set the buffer size for service flows where this Default Upstream Target Buffer Configuration parameter appliesfor each Best Effort and Non-Real-Time Polling , according to Service Flow according to the following expression (4), where this value is used for the variable ‘D’.

REQ27697 When not included in the configuration file and not overridden by the Buffer Control TLV, the CM SHOULD set the buffer size for service flows where this Default Upstream Target Buffer Configuration parameter appliesfor each Best Effort and Non-Real-Time Polling , Service Flow according to the expression (4), where a vendor-specific default value of at least 50 milliseconds is used for the variable ‘D’

Buffer Size (bytes) = D * min(R,P) / 8000, … (4)

where:

D = Default Upstream Target Buffer Configuration (in milliseconds), with a vendor-specific default value of at least 50 milliseconds

R =Maximum Sustained Traffic Rate (see Section C.2.2.7.2) (in bits per second) for the Service Flow

P = Peak Traffic Rate (see Section C.2.2.7.10 (in bits per second) for the Service Flow

If the CM is not able to provide an upstream buffer size that matches the calculated value, it is expected to provide a buffer size as close as possible to that value. REQ24270 The CM MUST NOT reject a service flow as a result of being unable to provide a buffer size that matches the calculated value.

For purposes of calculating min(R,P) if either argument is not provided or is set to zero, the value infinity is used for that argument.

		Type

		Length

		Value

		68

		2

		D (in milliseconds)

This parameter only applies to service flows for which all of the following are true:

1.	the upstream scheduling type is Best Effort or Non-Real-Time Polling,

2.	the QoS Parameter Set for the flow does not include the Buffer Control TLV (see Section C.2.2.7.11), and

3.	the QoS Parameter Set includes a non-zero Max Sustained Traffic Rate (see Section C.2.2.7.2) or a non-zero Peak Traffic Rate (see Section C.2.2.7.10) TLV.

The default value for D involves consideration of factors such as TCP implementation, TCP round-trip time (RTT), Maximum Sustained Traffic Rate, and Peak Traffic Rate. A single TCP Reno connection will need buffering equal to the RTT in order to saturate the link. However, TCP Reno is being phased out and being replaced by newer versions of TCP, such as TCP Cubic. With TCP Cubic, buffering equal to 40% of the RTT is sufficient. The minimum recommended value for D was obtained by assuming that the majority of upstream TCP connections would use TCP Cubic and would have an RTT of 125 ms or less. So, the minimum D is obtained by 0.40*125 ms = 50 ms.

		SPEC CHANGE #19

		TYPE OF CHANGE:

		TECHNICAL:

		EDITORIAL:

		BOTH:

		SECTION #

		TITLE

		PARAGRAPH / TABLE # / GRAPHIC #

		7.7.4.3

		Classifiers, ASF and Automatic Expansion

		-

Classifiers, ASF and Automatic Expansion

As packets associated with non-queue-building IP flows arrive, it is desirable to direct them to a Low Latency Service Flow. The Low Latency feature will make use of DOCSIS Packet Classifiers in order to do this. As always, CMs will implement US Packet Classifiers, and CMTSs will implement DS Packet Classifiers.

Packets from non-queue-building IP flows are expected to have certain characteristics. These characteristics typically apply both to IPv4 and IPv6 (though the location of the values within the IP headers is different):

· DSCP-EF marked – this marking may be used by applications (e.g., games)

· ECT(1) marked – this marking is used by L4S applications

In addition, since the ECN Congestion Experienced (CE) marking is ambiguous as to which version (ECT(0) or ECT(1)) is in use, by default all CE marked packets are directed to the Low Latency Service Flow.

For IPv4 packets, DSCP-EF marking implies that the upper 6 bits of the ToS octet are set to a value of 0x2e. In order to classify packets marked as DSCP-EF, the Packet Classifier IPv4 ToS Range and Mask TLV would be configured such that tos-low=0xb8, tos-high=0xb8, tos-mask=0xfc.

For IPv4 packets, ECT(1) marking implies that the lower 2 bits of the ToS octet are set to a value of 0x01, and CE marking implies 0x03, so to match both of these types of packets, the classifier needs to match the ECN-LSB. In order to classify packets marked with the ECN-LSB set, the Packet Classifier IPv4 ToS Range and Mask TLV would be configured such that (tos-low=0x01, tos-high=0x01, tos-mask=0x01).

Because of the nature of the IPv4 ToS Range and Mask TLV, a single classifier cannot be used for both DSCP-EF and ECN-LSB.

For IPv6 packets, the classifiers are similar for DSCP-EF and ECN-LSB, except that the IPv6 Traffic Class Range and Mask TLV will be used instead of the IPv4 ToS Range and Mask TLV. The values specified in the IPv6 Traffic Class Range and Mask TLV will be the same as in IPv4.

If the operator wants to classify IPv4 DSCP-EF and IPv4 ECN-LSB and IPv6 DSCP-EF and IPv6 ECN-LSB packets, then 4 classifiers will need to be created and associated with the Low Latency Service Flow.

Of course, other Packet Classifiers may also be associated with the Low Latency Service Flow. For example, perhaps a popular game has not been updated to perform DSCP-EF marking on the packets that it transmits and an operator wants to classify these packets to the Low Latency Service Flow. If the game uses a specific TCP or UDP destination port number, then a Packet Classifier can be added with the TCP/UDP Destination Port Start and End TLVs set to the port number for the game server.

These Packet Classifiers will be configured by the operator in the AQP table. The CMTS MUST merge tThe AQP table classifier settings need to be “merged” with any Packet Classifier settings that are associated with the ASF that is specified in the configuration file and REG-REQ(-MP). The AQP table will have only the classifiers that are necessary in order to identify a packet as being part of a non-queue-building IP flow. The classifier merge process is described in the examples and requirements below, as well as Annex Q.

If there are no Packet Classifiers specified in the configuration file and REG-REQ(-MP), then the merge process is simpleas follows: the CMTS MUST creates new Packet Classifiers, assigns ID values as needed (including the Service Flow ID from the Low Latency SF that was created), and populates TLVs Classifiers from the AQP table (e.g., IPv4 DSCP-EF, etc.). This diagram shows an example of one such Packet Classifier being added from the AQP:

[image:]

[bookmark: _Toc535741764]Figure 123 - Classifier Merge Example 1

If there are 1 or more Packet Classifiers specified via the configuration file, then the merge process can be more complicated, and could even result in a conflict. The diagram below shows an example of a configuration file where the ASF does not contain the primary SF (where the ASF is not being expanded from the first SF in the REG-REQ(-MP)), and thus needs to have a Packet Classifier associated with it. In this example, there is no conflict associated with the merge, and the AQP table contains 2 classifiers (DSCP-EF for IPv4 and for IPv6):

[image:]

[bookmark: _Toc535741765]Figure 124 - Classifier Merge Example 2

The diagram below also shows an example of a configuration file where the ASF does not contain the primary SF (where the ASF is not being expanded from the first SF in the REG-REQ(-MP)), and thus needs to have a Packet Classifier associated with it. In this example, there is a conflict associated with the merge:

[image:]

[bookmark: _Toc535741766]Figure 125 - Classifier Merge Example 3

SP_MULPIv3_1-REQ-7931 In a scenario where a Packet Classifier TLV specified in the configuration file/REG-REQ(-MP) is also specified in the AQP table (as shown in the example above), the CMTS MUST reject the Registration Request.

The following requirements apply to a CMTS as it instantiates the classifiers for the constituent Classic and Low latency Service flows within and ASF.

· When the CM configuration file contains a TLV 24/25 (SF) with an SCN (sub-TLV [24/25].4), and with one or more TLV 22/23 (classifiers) pointing to the SF, the CMTS performs an AQP lookup and if it finds a match, it MUST merge the classifiers from the CM Configuration file and the AQP definition.

· When the CM configuration file contains a TLV 70/71 (ASF) with an AQP name, and with one or more TLV 22/23 (classifiers) pointing to the ASF, the CMTS performs an AQP lookup and if it finds a match, it MUST merge the classifiers from the CM Configuration file and the AQP definition.

· In the context of a CM configuration file, a classifier can point to an ASF Reference. This is only for provisioning purposes. A classifier cannot point to an ASFID, the CMTS will need to resolve any such classifier to the point to the individual SFs within the ASF.

· When the CM configuration file contains a TLV 70/71 (ASF) with an AQP name, and also includes explicit TLV 24/25 (SF) defining the LL-SF and Classic-SF, one or both of which have explicit TLV 22/23 (classifiers) defined, the CMTS MUST NOT merge the AQP classifiers with the explicit classifiers that point to the constituent Service Flows. In this case the CMTS creates the ASF and the individual SFs using the explicit TLV 22/23 (classifiers) defined in the configuration file.

· When the CM configuration file contains a TLV 70/71 (ASF) with an AQP name, and with one or more TLV 22/23 (classifiers) pointing to the ASF, and also includes explicit TLV 24/25 (SF’s) defining the LL-SF and Classic-SF, one or both of which have explicit TLV 22/23 (classifiers) defined, the CMTS MUST merge the AQP classifiers with the config file classifiers that point to the ASF, but it does not merge the AQP classifiers with the explicit classifiers that point to the constituent Service Flows. The explicit classifiers are used without modification.

		SPEC CHANGE #20

		TYPE OF CHANGE:

		TECHNICAL:

		EDITORIAL:

		BOTH:

		SECTION #

		TITLE

		PARAGRAPH / TABLE # / GRAPHIC #

		7.6.2

		Aggregate Service Flow

		-

[bookmark: API_ID211854][bookmark: _Toc535742254]Aggregate Service Flow

An Aggregate Service Flow (ASF) is a grouping of one or more Service Flows mapped to a single CM. The DOCSIS Network supports a hierarchical, two-layered subscriber QoS model through the concept of an ASF, which is defined as a MAC-layer transport service that provides unidirectional transport of frames, transmitted in the upstream direction by a CM, or in the downstream direction by the CMTS.

ASFs are instantiated on the CMTS based on the definition from the CM configuration file. This specification does not define other methods for creation of ASFs can also be created (and modified/deleted) dynamically using the Dynamic Services (DSx) mechanisms.

In addition to allowing hierarchical subscriber QoS, Aggregate Service Flows are also used to provide low latency services as described in Section 7.7.

SP_MULPIv3_1-REQ-7899 The CMTS MUST support Aggregate Service Flows in the upstream direction for Low Latency Services as described in Section 7.7. SP_MULPIv3_1-REQ-7900 The CMTS MUST support Aggregate Service Flows in the downstream direction for Low Latency Services as described in Section 7.7.

REQ27530 The CMTS SHOULD provide support for non Low Latency ASFs. REQ27531 The CMTS SHOULD support at least one non Low Latency ASF instance per CM.

		SPEC CHANGE #21

		TYPE OF CHANGE:

		TECHNICAL:

		EDITORIAL:

		BOTH:

		SECTION #

		TITLE

		PARAGRAPH / TABLE # / GRAPHIC #

		New Annex Q

		ASF Classifier Expansion

		-

This annex defines the classifier merge methods that the CMTS is required to support when creating Low latency ASF and the individual Low Latency and Classic Service Flows as described in Section 7.7.4.3 These are methods by which the CMTS handles Classifier Rule Priority in the generation and merging of classifier criteria.

reg_rsp_t expand_asf_classifiers(reg_req, aqp_table)

{

 // First, we need to spread out the classifier priority values from

 // the config file so that we can deal with AQM expansion. Of course

 // the spread_priority variable needs to be at least 10 bits, since the

 // priority variable is 8 bits.

 for each (classifier in reg_req.classifier_list)

 {

 classifier.spread_priority = (classifier.priority + 1) * 2;

 reg_rsp.add_classifier(classifier);

 }

 // Next, for each SF (or ASF) that refers to an entry in the AQP

 // table, we need to see how many classifiers there are, and

 // instantiate them with the appropriate TLVs (i.e. merge the settings

 // from the AQP table), and compute the correct priority values.

 for each (service_flow in reg_req.service_flow_list)

 {

 if (((service_flow has SCN)|| (service_flow has AQPN)) && (aqp_table.search(service_flow.scn) == match_found))

 {

 aqp_entry = aqp_table.get_entry(service_flow.scn);

 // See if we can find any classifiers in the REG-REQ associated

 // with this SF/ASF. If so, then we need to perform classifier

 // expansion based on the classifiers in the AQP table.

 classifier_found = false;

 for each (classifier in reg_req.classifier_list)

 {

 if (classifier.flow_reference == service_flow.flow_reference)

 {

 classifier_found = true;

 for each (aqp_classifier in aqp_entry.classifier_list)

 {

 lld_classifier = copy(classifier);

 lld_classifier.spread_priority = classifier.spread_priority + 1;

 merge_result = merge_classifier_aqp_settings(lld_classifier, aqp_classifier);

 if (merge_result == conflict_encountered)

 {

 reg_rsp.error(LLD_classifier_merge_conflict, lld_classifier);

 return reg_rsp;

 }

 reg_rsp.add_classifier(lld_classifier);

 }

 }

 }

 // If there were no classifiers associated with this SF/ASF in the REG-REQ,

 // then we need to instantiate new LLD classifiers from a blank template

 // ("default") classifier.

 if (classifier_found == false)

 {

 for each (aqp_classifier in aqp_entry.classifier_list)

 {

 lld_classifier = new default_classifier;

 lld_classifier.spread_priority = 1;

 merge_classifier_aqp_settings(lld_classifier, aqp_classifier);

 reg_rsp.add_classifier(lld_classifier);

 }

 }

 }

 }

 // Finally, we need to de-spread the classifier priority values

 // so that the values are compacted at the lower (or upper) end of

 // 3 separate priority ranges: 0..129, 130..385, and

 // 386..513. These get compacted down to 0..i, 128..j, and k..255,

 // respectively.

 //

 // Start with the first range, giving the spread priority range 0..129,

 // the target de-spread priority 0, and tell it to start from lowest to

 // highest.

 result = despread_classifier_priority_range(reg_rsp, 0, 129, 0, kDespreadLower);

 if (result == true)

 {

 // Now repeat this for the other 2 priority ranges.

 result = despread_classifier_priority_range(reg_rsp, 130, 385, 128, kDespreadLower);

 if (result == true)

 {

 // Note that here we will go from highest to lowest (k..255).

 result = despread_classifier_priority_range(reg_rsp, 386, 513, 255, kDespreadUpper);

 }

 }

 // If we make it this far, all is well, return success.

 return reg_rsp;

}

bool despread_classifier_priority_range(reg_rsp, spread_priority_min, spread_priority_max,

 target_priority, despread_direction)

{

 // Going from target_priority upward

 if (despread_direction == kDespreadLower)

 {

 // Iterate over each spread priority value in the min->max range

 while (spread_priority_min <= spread_priority_max)

 {

 // Iterate over each classifier in the REG-RSP, looking for ones

 // that have a matching spread priority value. The matching ones

 // get assigned a de-spread priority value from the current target

 // value.

 target_priority_used = false;

 for each (classifier in reg_rsp.classifier_list)

 {

 if (classifier.spread_priority == spread_priority_min)

 {

 classifier.priority = target_priority;

 target_priority_used = true;

 }

 }

 // Advance the spread priority value that we are looking for,

 // and advance the target de-spread priority value if we used

 // the current one at least once.

 spread_priority_min++;

 if (target_priority_used == true)

 {

 target_priority++;

 }

 }

 }

 // Going from target_priority downward

 else

 {

 // Iterate over each spread priority value in the max->min range

 while (spread_priority_max >= spread_priority_min)

 {

 // Iterate over each classifier in the REG-RSP, looking for ones

 // that have a matching spread priority value. The matching ones

 // get assigned a de-spread priority value from the current target

 // value.

 target_priority_used = false;

 for each (classifier in reg_rsp.classifier_list)

 {

 if (classifier.spread_priority == spread_priority_min)

 {

 classifier.priority = target_priority;

 target_priority_used = true;

 }

 }

 // Reduce the spread priority value that we are looking for,

 // and reduce the target de-spread priority value if we used

 // the current one at least once.

 spread_priority_max--;

 if (target_priority_used == true)

 {

 target_priority--;

 }

 }

 }

 return true;

}

NOTE TO EC AUTHORS regarding TLV tables: To ensure consistency in our specs, please copy and use the appropriate table as shown below when inserting new TLV tables in ECs.

DO NOT change column widths as they have been set exactly for our requirements software.

		TLV Type

		Length

		Units

		Access

		Value

		

		

		

		

		

		TLV Type

		Length

		Access

		Value

		

		

		

		

		

		

		

		

		Type

		Length

		Value

		

		

		

<NOTE: Do NOT delete this line; it is required for the next page to be landscape format.>

EC Identifier: MULPIv3.1-N-19.2011-5

Title of EC: Clarifications and refinements to LLD technology

DOCSIS-SpecDetailChanges.docx		1 of 3 of Change Details

In submitting the Engineering Change Request ("ECR"), the Author(s) [primary author, additional authors, and contributors], individually and as an authorized representative of the Company, agrees that if CableLabs incorporates this ECR in whole or in part into the relevant Specification or Test Plan, all intellectual property in the ECR shall be licensed royalty free, and without confidentiality, under the terms of the "Data-Over-Cable Service Interface Specifications License Agreement" ("Contribution Agreement"). CableLabs may disclose the content of this ECR to CableLabs' members and such others as is necessary for the development of CableLabs' specifications. Questions about the Authors' licensing of intellectual property in this ECR submission may be directed to legal@cablelabs.com.

DOCSIS-ChangeDetails_5-2016.docx		2 of 3 of Change Details

In submitting the Engineering Change Request ("ECR"), the Author(s) [primary author, additional authors, and contributors], individually and as an authorized representative of the Company, agrees that if CableLabs incorporates this ECR in whole or in part into the relevant Specification or Test Plan, all intellectual property in the ECR shall be licensed royalty free, and without confidentiality, under the terms of the "Data-Over-Cable Service Interface Specifications License Agreement" ("Contribution Agreement"). CableLabs may disclose the content of this ECR to CableLabs' members and such others as is necessary for the development of CableLabs' specifications. Questions about the Authors' licensing of intellectual property in this ECR submission may be directed to legal@cablelabs.com.

		[bookmark: REQ_ChangeDetail_Table]REQ CHANGE DETAILS - Mandatory for ECO and ECN
(Completion of green fields required; gray fields only if applicable)

		REQ ID#
If existing REQ, list #; if new requirement, type "new")

		Add / Change/
Delete / Move
(A/C/D/M) (REQs can be moved and changed at the same time:
list as M+C)

		New/Revised Text
(Only enter new requirement text or the final revised text in this column.)

		Rqmt Category
If changing or new, list value (e.g., MUST; SHOULD MAY), or "NC" for No Change)

		DUT
List new value (e.g., CM, CMTS, CCAP, EQAM, etc.)
or "NC" for No Change

		Trace To
Test Case TC#
Insert TC# or "new" if applicable; or
"NC" for No Change

		DUT Mode MIBs only
(list "NC" for No Change)

		Access
MIBs only
(list "NC" for No Change)

		Comments

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

Test Plan Changes are mandatory for ECRs to advance to ECO status. Please complete Test Plan change details in the separate embedded form.

Document in S:\SPECS\Master EC Docs\CM\DOCSIS_DCA-MHAv2_Spec_EC-Form_2-2017.docx	4 of 3 of Change Details

In submitting the Engineering Change Request ("ECR"), the Author(s) [primary author, additional authors, and contributors], individually and as an authorized representative of the Company, agrees that if CableLabs incorporates this ECR in whole or in part into the relevant Specification, all intellectual property in the ECR shall be licensed royalty free, and without confidentiality, under the terms of the "Data-Over-Cable Service Interface Specifications License Agreement" ("Contribution Agreement"). CableLabs may disclose the content of this ECR to CableLabs' members and such others as is necessary for the development of CableLabs' specifications. Questions about the Authors' licensing of intellectual property in this ECR submission may be directed to legal@cablelabs.com.

image3.wmf

Condit-

ional priority

scheduler

Classifier

ECN

marker

Drop/

mark

√(prob

C

)

PIE

AQM

L4S

AQM

 Low Latency

Classic

prob

L

prob

C

K * prob

Base

Coupling

data flow

control flow

prob

C / L

: drop / mark probability

prob

Base / Native / CL

 : internal control variables

K : coupling constant

prob

CL

prob

Native

max

prob

Base

image4.png

Low Latency

Classic

— data flow

> control flow

scheduler

probc
mNative /CL
K

: drop / mark probability
: internal control variables

: coupling factor

image5.wmf

Condit-

ional priority

scheduler

Classifier

ECN

marker

Drop/

mark

(prob

Base

)

2

Base

AQM

L4S

AQM

 Low Latency

Classic

prob

L

prob

C

K * prob

Base

Coupling

data flow

control flow

prob

C / L

: drop / mark probability

prob

Base / Native / CL

 : internal control variables

K : coupling constant

prob

CL

prob

Native

max

prob

Base

image6.png

Provisioning Server
te]

image7.png

CM

CMTS

image8.png

CMTS

CM

image9.png

MAC

Management Message Header

Transaction 1D

“TLV-encoded information

image10.png

octets | | |

p MAC Management Message Header
Confirmation
Transaction 1D P

“TLV-encoded information

image11.png

octets | | |

= MAC Management Message Header
Confirmation
Transaction 1D P

“TLV-encoded information

image12.png

octets | | |

= MAC Management Message Header

Transaction 1D

“TLV-encoded information

image13.png

Octets |

MAC

Management Message Header

Transaction 1D

Confirmation
Code

“TLV-encoded information

image14.png

Octets |

MAC

Management Message Header

Transaction 1D

Confirmation
Code

“TLV-encoded information

image15.png

MAC Management Message Header

Transaction 1D

Reserved

SFID

“TLV-encoded information

image16.png

Octets |

MAC Management Message Header

Transaction 1D

Confirmation
Code

Reserved

image17.png

DSC
DSD

A

DSA

image18.png

=]

New Service Flow(s) needed
Checkifresourcesare available
SendDSAREQ

ReceiveDSARSP
If ActiveQoSParamSetis non-nul, Enable.
ransmission andiorreceplion of data on
new Service Flow(s)

Send DSA-ACK.

TS

ReceiveDSAREQ
‘Check fCM authorizedforServicels)
‘Check Servic Flows) QoS can be supported
Create SFID(s)

fupsiream AdmittedQoSParamSetis non-nul, Create:
SID or SID Cluster Group

f upsiream ActiveQoSParamSet s nornull, Enable:
reception o data onnew upsiream Service Flow.

SendDSARSP

ReceveDSA-ACK.

If downstream ActiveQoSParamSets non-null Enable:
ransmission of data on new downstream Service Flow

image19.png

ReceiveDSAREQ

‘Confim CMcan support Service
Flow(s)

‘Add Downstream SFID (ifpresent)

Enable receptiononanynew
‘downsiream Service Flow

SendDSARSP

ReceveDSA-ACK.

‘Enable ransmission onnewupsitream
Service Flow

TS

New Service Flow(s) requiredfor M
‘Check CMauthorized for Service(s)

‘Check Servic Flows) QoS can be supported
Create SFID(s)

Hupsiream AdmittedQoSParamSetis nonull, Cresle
SID or SID Cluster Group

f upsiream ActiveQoSParamSets nornull, Enable:
reception o data onnew upsiream Service Flow.

SendDSAREQ

ReceiveDSARSP

‘Enable ransmissionand recepion of data onnew
Service Flow(s)

Send DSA-ACK.

image20.png

cMTS.
Receive DSC-REQ
Validate Request

Moy Service Flow

Send DSC-RSP

Receive DSC-ACK

™
Senice Flow Requires Modifying
E DSCREQ Send DSC-REQ
——— DSC-RSP. - Receive DSC-RSP.
Modify Service Flow
< DSC-ACK ——— Send DSC-ACK

image21.png

cMTS.
Senvice Flow Requires Moditying
Send DSC-REQ

Receive DSC-RSP.
Moy Service Flow

Send DSC-ACK

DSCREQ

DSC-RSP ——

——— DSC-ACK ——>

™

Receive DSC-REQ
Moty Service Fiow

Send DSC-RSP

Receive DSC-ACK

image22.png

TS ™
Upstream Drop Classifiers Require Modification

Send DSC-REQ ——— DSCREQ ——> Receive DSC-REQ
Add or Modify the UDCs
Receive DSC-RSP < DSC-RSP Send DSC-RSP

Update any state information

image23.png

™

Service Flow(s) no longer needed
Delete Service Flow(s)
Send DSD-REQ

Receive DSD-RSP.

—DSD-REQ—>

<-DSD-RSP—

cMTS.

Receive DSD-REQ
Verity CMis Service Flow(s) ‘owner’
Delete Service Flow(s)

Send DSD-RSP

image24.png

™

Receive DSD-REQ
Delete Service Flow(s)
Send DSD-RSP

TS
Service Flow(s) no longer needed
Delete Service Flow(s)
Determine associated CM for this Service Flow(s)
<—DSD-REQ— Send DSD-REQ

—DSD-RSP—> Receive DSD-RSP.

image25.png

Config File / REG-REQ(-MP) REG-RSP(-MP)

Primary SF or ASF Primary Classic SF

Classifier:
AQP Table Classifier: DSCP-EF Latency SF
Priority=1

Merge == DSCP-EF

Priority=+1

Blank Template
Classifier

image26.png

Config File / REG-REQ(-MP) REG-RSP(-MP)
Primary SF Primary SF
Classifier:
Src MAC Addr || Secondary SF or
Priority=0 ASh
[TRIE/= Classifier: "
Src MAC Addr || Secondary Classic
i Priority=0 gF
: Classifier:
AQP Table Classifier:
Src MAC Addr
Merge ——»| IPv6 DSCP-EF
Priority=+1 IP_IG _DSCP—EF
Latency SF
e e —— Classifier:
able Classifier: Src MAC Addr
Merge ——» IPv4 DSCP-EF |Pv4 DSCP-EF
Priority=+1

image27.png

Config File / REG-REQ(-MP)

Primary SF
Classifier:
DSCP-AF igt::ondary SF or
Priority=0
AQP Table Classifier:
Merge |—— DSCP-EF
Priority=+1

REG-RSP(-MP)

Primary SF

Classifier:
DSCP-AF
Priority=0

Secondary Classic
SF

Classifier:
DSCP-EF???
Priority=1

— Latency SF

image1.jpeg

image2.jpeg

image2.emf
DOCSIS-TestPlanDeta ilChanges.docx

DOCSIS-TestPlanDetailChanges.docx

EC Identifier:

Title of EC:

		CableLabs Engineering Change Details

NOTE - This embedded document is unprotected; therefore, all Word features are available including: Track changes, document compare, all menus and toolbars, etc. For further instructions on how to complete this Details form, see the embedded instructions document in the master EC Form.

ENGINEERING CHANGE DOCUMENT DETAILS

[bookmark: ECID]EC Identifier:

(to be inserted by CableLabs)

[bookmark: TitleOfEC]Title of EC:

(to be inserted by CableLabs)

		Change Details - Revision History

		If modifying the change details from the original submitted version, please complete the following information. Include a brief description of what is different in this version compared to the previously posted version:

Date of the revised EC:

Description of new version:

Proposed Test Plan Changes (PLEASE INCLUDE TEST CASE NUMBER, TITLE, AND AFFECTED PORTION.) (MANDATORY FOR ECOS AND ECNS) Please include any additions or modifications to existing Acceptance Test Plan (ATP) Test Cases that are a result of the specification changes noted separately. Changes can affect multiple Test Cases. To submit more than 3 changes, copy the numbered change table and paste, updating the change numbers.

Test Plan Changes

Name of test plan affected:

		ATP CHANGE #1

		

		TEST CASE #

		TEST CASE TITLE

		AFFECTED PORTION (PROCEDURE #, INTRO, ETC.)

		

		

		

		ATP CHANGE #2

		

		TEST CASE #

		TEST CASE TITLE

		AFFECTED PORTION (PROCEDURE #, INTRO, ETC.)

		

		

		

		ATP CHANGE #3

		

		TEST CASE #

		TEST CASE TITLE

		AFFECTED PORTION (PROCEDURE #, INTRO, ETC.)

		

		

		

End of Request Details

DOCSIS-embedded-change-detail-for-ECs_5-16 	1 of 2 of Change Details

In submitting the Engineering Change Request ("ECR"), the Author(s) [primary author, additional authors, and contributors], individually and as an authorized representative of the Company, agrees that if CableLabs incorporates this ECR in whole or in part into the relevant Specification, all intellectual property in the ECR shall be licensed royalty free, and without confidentiality, under the terms of the "Data-Over-Cable Service Interface Specifications License Agreement" ("Contribution Agreement"). CableLabs may disclose the content of this ECR to CableLabs' members and such others as is necessary for the development of CableLabs' specifications. Questions about the Authors' licensing of intellectual property in this ECR submission may be directed to legal@cablelabs.com.

DOCSIS-TestPlanDetailChanges_5-16		2 of 2 of Change Details

In submitting the Engineering Change Request ("ECR"), the Author(s) [primary author, additional authors, and contributors], individually and as an authorized representative of the Company, agrees that if CableLabs incorporates this ECR in whole or in part into the relevant Specification or Test Plan, all intellectual property in the ECR shall be licensed royalty free, and without confidentiality, under the terms of the "Data-Over-Cable Service Interface Specifications License Agreement" ("Contribution Agreement"). CableLabs may disclose the content of this ECR to CableLabs' members and such others as is necessary for the development of CableLabs' specifications. Questions about the Authors' licensing of intellectual property in this ECR submission may be directed to legal@cablelabs.com.

image2.jpeg

image1.jpeg

image3.emf
Embed_Doc_TrkChg_ Instr.docx

Embed_Doc_TrkChg_Instr.docx
Instructions for completing Change Details sections

The following steps MUST be followed in the order listed. This ensures technical reviewers and editors can accurately review and update the document:

1. Turn OFF Track Changes from the Review tab in Word or by right-clicking in the Status bar. For more information, [image: click here].

2. Copy and Paste ALL original text from Specification or Test Plan.

3. Turn ON Track Changes. Any deletions and additions you make will be marked on the text. The colors that are used are defined in the Change Tracking Options. For more information [image: click here].

Note 1: If Track Changes are not used, this EC will be returned to you for correction to include the Track Changes.

Note 2: In rare circumstances, if extensive changes are necessary in multiple sections or throughout the document, the entire document to be changed may be embedded in the EC form, replacing the existing embedded Changed Detail document. Check with project spec lead for further details.

IMPORTANT NOTE! You MUST save the EC form after closing the embedded document to retain your edits!!

To compare most the recent version of this EC with previous versions of this EC, save the embedded documents to your local drive with unique file names prior to comparing.

Instructions on how to embed a file within a Word 2010 document.

1. Open your EC form in Windows 2010. From the Insert Tab at the top of the Word window, select 'Object'.

2. Click the 'Object' option:

3. On the "Create from File" tab, browse to select the appropriate file.

4. When the file is selected, select the ' Display as icon' box.

5. Remove all but the file name from the 'File name' box and press OK (in other words, delete the file path if it appears on your computer).

6. Press OK again and the document is now embedded into your EC form.

7. If you encounter problems embedding the file in the EC form, please send the embedded document form as a separate file with the EC form when you submit it to docsis_ec@cablelabs.com.

[bookmark: _How_to_Turn][bookmark: _Ref310949641]How to Turn on Track Changes

		Turn on Track Changes from Review Tab

		[image: track changes button]

		[bookmark: _GoBack]OR

		

		Turn on Track Changes from Status Bar

		[image: trkchgs right-click]

[bookmark: _Change_Tracking_Options][bookmark: _Ref310949829]Change Tracking Options

[image: track changes options]

If you use the colors defined above, your inserted text will be blue underlined and your deletions will be red with strikethrough. The changed lines will also be marked with a revision bar in the left margin.

[bookmark: _Toc352933757]Deadlines for Submission

The deadline for submitting proposed ECRs and revisions to ECRs and ECOs is 8:00am Mountain Time on Wednesday of each week for posting that week. Any changes to this schedule will be posted to the appropriate DOCSIS reflectors. Newly proposed ECs and revisions to ECs received after that time will not be posted until the following week.

[bookmark: _Toc352933758]Submitting a new ECR

To officially submit a new ECR or a revision to an existing EC, it must be sent via email to docsis_ec@cablelabs.com by the submission deadline noted above. Please do not send it to individuals at CableLabs. The docsis_ec@cablelabs.com address will distribute the document to all of the necessary internal personnel for processing.

[bookmark: _Toc352933759]Helpful Information for Writing ECs

When you are writing or reviewing an ECR, there are several things you should do. Imagine that you are trying to follow the instructions contained in your ECR. Can you do it? Ask yourself the following questions:

Does my ECR refer to sections of the specification by number and by title?

Sections get moved around all the time in the course of preparing them for outside standards organizations such as SCTE and the ITU-T, so it’s important to reference things by title as well as number. There are boxes designated for this purpose in the EC form.

When I suggest changes, do I include the current state of the text, as well as my proposed change, or do my instructions state something more along the lines of “Change word 6 of paragraph 5 to wumpus”?

See the previous point. Sometimes, when a spec has been changed around like crazy, the only way to find text to be changed is to search for it. If you don’t include the original text, you may be out of luck!

Is my grammar correct? What about my spelling?

Our standards are the face that CableLabs presents to the world, run the spell and grammar check.

Have I referenced the latest version of the spec?

If you’re not sure that the version you’re working from is the latest, please use the hyperlink on the form and check DocZone, or just ask us.

Do any previous ECNs modify the text my ECR proposes to change?

Make sure that your ECR reflects any previous ECNs that have not been incorporated. Otherwise, it may not get incorporated as you intended!

Is my formatting correct?

If you aren’t sure how to format your contribution, format it very simply and let the editor folding it in worry about the formatting.

Embed_Doc_TrkChg_Instr.docx	5

image1.jpeg

image2.emf

oleObject1.bin

image3.emf

oleObject2.bin

image4.emf

oleObject3.bin

image5.jpeg

Make sure Track Changes
field is not highlighted

e -

Vi m® % * @l

Grammar Count |~ * | Comment
Proofing Language Comments

9% Finat: Show Markup
2 Show Markup -

] Reviewing pane -
Tading

image6.jpeg

Bl = acwnEEs
B S

[——
seton
(] e
setor e estion
wnetusger
Sonmn
soacoum
() numbet st ety
(] 390 sns Gamaarcrck
Y] woonnse
(V] sanstures
JorR—
(7] pemsson
T s =
ey
pute
Sckcantioge
a0 tcorang
] s
[m—

3 Toggle button shows
in Status Bar

image7.jpeg

Review | View Developer

1t 3, Final:Show Markup ~
2 Show Markup +
Fr 3] Reviewing Pane ~

B Track changes

Markup
Insertiors: [ETE—] coor: [l o |

peltons:[Suethvough] coor: [Mres |
Changedines: [Lor border o] cob: [auo |

Comments:

