
Configuring Eclipse for OCAP stack debugging
The following steps describe how to create an Eclipse project for the RI OCAP stack source code that will enable debugging of the OCAP java source code

1. Create a new project

File->New->Java Project
Enter Project name, and select "Finish" to accept remaining defaults

2. Import OCAP source

Right click on newly created project from step 1 & select "Properties'"
Click "Java Build Path" in the left pane of the properties form

Click on the "Source" tab and then select the "Link Source..." Button
Navigate to and select $OCAPROOT/ri/RI_Stack/java/src/base
use the default folder name
Select the "OK" button

... Repeat above for ds, dvr, fp, and hn in directories located in the $OCAPROOT/ri/RI_Stack/java/src/

3. Add Exclusion patterns

In the "Source" tab of the "Java Build Path", double-click the <Project>/base entry, click Next in the Edit source folder window.
Next to the Exclusion patterns pane, click Add Multiple...
Browse to org/cablelabs/impl/dvb/ui, using the arrows next to the folder to descend into the child directory.
Control-click

DVBBufferedImagePeer2.java
DBGraphicsImpl.java
DBGraphicsImpl2.java

to highlight them.

Browse to org/apache/log4j/rule, control-click to highlight "LikeRule.java". That's 4 highlighted exclusions. Click OK, Finish.
Back at the Source tab, double-click the <Project>/dvr entry, click Next in the Edit source folder window.
Next to the Exclusion patterns pane, click Add Multiple...
Browse to org/ocap/shared/media, control-click BeginningOfContentEvent.java and EndOfContentEvent.java, click OK, Finish.

4. Configure the project to work with the OCAP code

Still in the project Properties window, click "Java Build Path" in the left pane of the properties form then select the "Libraries" tab
Remove "JRE System Library" (select and hit "Remove" button)
In order to compile OCAP code succesfully add the following external jar files

Hit "Add External JARs..." button
browse to & select $OCAPROOT/bin/lib/ocap-stub.jar
browse to & select $OCAPROOT/tools/generic/cybergarage/cybergarage.jar
browse to & select $OCAPROOT/tools/generic/NanoXML-2.2.3/lib/nanoxml.jar
browse to & select $OCAPROOT/tools/generic/java/pbp11.jar

5. Configure the compiler

Click "Java Compiler" in the left pane of the properties form
Make sure "Enable project specific settings" is checked
Make sure "Use default compliance settings" is unchecked
set all compiler compliance levels to 1.4

Click OK button at the bottom to exit the properties form

6. Add line numbers to output

In the Eclipse "Window" menu, select Preferences.
In General->Editors->Text Editors (parent), check "Show line numbers", click OK.

7. Configure the RI Stack to accept remote debugging connections

Make sure the follow entries are un-commented in $OCAPROOT/bin/$OCAPTC/env/mpeenv.ini
VMOPT.19=-Xrunjdwp:transport=dt_socket,address=8000,server=y,suspend=y
VMOPT.20=-Xdebug

8. Create a remote JVM debug launcher configuration in eclipse

Click the down arrow next to the debug icon (small green bug icon, 4th from the left, along the top eclipse icon panel)
Select "Remote Java Application", and click the "new" icon (upper left hand side of the form ... piece of paper with + sign in upper right corner)
OK Keep all of the defaults
Leave this form

9. Launch and debug the code

cd $PLATFORMROOT; runRI.sh
as soon as you see "Listening for transport dt_socket at address: 8000" in the output console, hit the "Debug" button on the "Launch Debug
Configurations" form

	Configuring Eclipse for OCAP stack debugging

