
1.

2.

3.

4.

5.

6.

7.

8.

9.

Logging Guidelines
Following the Great Relogging activity that took place recently, a revised format for logging in Java code is established as follows:

Logging.LOGGING compile-time flag has been removed. Do not use it.

The logger should always be named .log

org.apache.log4j.Category is deprecated in favor of . Example:org.apache.log4j.Logger
private static final Category log = Logging.LOGGING ? Category.getInstance(POD.class) : null;
is replaced with
private static final Logger log = Logger.getLogger(POD.class);

A class should never add “implements Logging” to its declaration statement.

The following new runtime logging level checks are available:
log.isFatalEnabled() // currently unused
log.isErrorEnabled()
log.isWarnEnabled()
log.isInfoEnabled()
log.isDebugEnabled()
log.isTraceEnabled() // currently unused
Example:
if (log.isInfoEnabled())
{
 log.info("restoreRecordings: Storage not ready - deferring load of recording database");
}
Please note that curly braces are required around the call. The following should be used:log.info(...); not
if (log.isInfoEnabled())
 log.info("restoreRecordings: Storage not ready - deferring load of recording database");
or
if (log.isInfoEnabled()) log.info("restoreRecordings: Storage not ready - deferring load of recording
database");

Every single log message should have an check, even where there are two consecutive log messages in the if (log.isXXXEnabled())
source. Example:
if (log.isDebugEnabled()
{
 log.debug("Destroy called. Ok.");
}
if (log.isDebugEnabled()
{
 log.debug("Received Tuning Over failed event");
}
The following should be used:not
if (log.isDebugEnabled()
{
 log.debug("Destroy called. Ok.");
 log.debug("Received Tuning Over failed event");
}

Mixing business logic with logging level checks should be avoided. Example:
if (low)
{
 if (log.isWarnEnabled())
 {
 log.warn("VM memory low even after reclamation");
 }
}
The following should be used:not
if (log.isWarnEnabled() && low)
{
 log.warn("VM memory low even after reclamation");
}

Also, please note that the business logic checks should be nested outside rather than inside of the logging statements. Using the previous
example, the following should be used:not
if (log.isWarnEnabled())
{
 if (low)
 {
 log.warn("VM memory low even after reclamation");

}
}

9.

10.

11.

Do not use inherited loggers. Don't make a logger protected in a parent class and use that logger from a subclass. Every class that needs to log
should just have its own logger.

Any logging-specific logic that is not part of the actual log call should also be wrapped in a log level check.

In the future, we should use 'trace' where we are tempted to add a boolean to control debug level loggin with more granularity.

For reference, is the link to our coding guidelines. Refer to section 2.4: Logging Guidelines.here

https://community.cablelabs.com/svn/OCAPRI/trunk/common/doc/GeneralCodingStandards.pdf

	Logging Guidelines

